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LINEAR THEORY OF BOUNDARY EFFECTS IN OPEN WIND TUNNELS WITH
FINITE JET LENGTHS
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SUMMARY

In the first part, the boundary conditions for an open wind
tunnel (incompressible flow) are examined with special refer-
ence to the effects of the elosed entrance and exit sections. Basie
conditions are that the velocity must be continuous at the en-
trance lip and that the velocities in the upstream and down-
stream closed portions must be equal. For the two-dimensional
open tunnel, interesting possibilities develop from the fact that
the pressures on the two free surfaces need not be equal.

Electrical analogies that might be used for solring the flow in
open wind tunnels are outlined. Two types are described—
one in which elecirical potential corresponds to velocity poten-
tial, and another in which electrical potential corresponds to
acceleration potential. The acceleration-potential analogies
are probably experimentally simpler than the velocity-potential
analogies.

In the second part, solutions are derived for four types of
two-dimensional open tunnels, including one in which the
pressures on the two free surfaces are not equal. Numerical
results are given for every case. In general, if the lifting ele-
ment is more than half the tunnel height from the inlet, the
boundary effect at the lifting element is the same as for an
infinitely long open tunnel.

In the third part, a@ general method is given for caleulating
the boundary effect in an open circular wind tunnel of finite
det length. Numerical results dre given for a lifting element
concentrated at a point on the axis.

INTRODUCTION

The basic theory of boundary corrections for an open
wind tunnel was given by Prandtl many years ago (reference
1) and has since been used with reasonable success. The
infinitely long open jet that was assumed in Prandtl’s
analysis, however, has been frequently questioned as an
adequate representation for an open wind tunnel, which
normally has a relatively short jet between closed entrance
and exit regions. The present examination of the problem
was occasioned by the need for boundary corrections for
tests in the Langley full-scale tunnel of & large helicopter, of
which the forward edge of the rotor disk reached almost to
the mouth of the entrance bell while the rear edge approached
the exit bell. Previous studies (reference 2) had shown that
the Prandtl theory was satisfactory for a wing in the usual
position in the tunnel (about 20 feet downstream of the

entrance), but it was felt that this simple theory was in

adequate for such far forward and rearward locations of the
lifting surface and that some further development was
desirable. The only previous ansalysis bearing directly on
the problem seemed to be that of reference 3, which con

sidered & lifting element concentrated at a point on the axis
of a circular open tunnel of finite jet length; however, the
treatment therein was not rigorous and was justified only by
a somewhat heuristic discussion, so that its general applica-
bility was not obvious. Other studies treated either two-
dimensional or axially symmetrical conditions (references 4
end 5) and also did not consider the closed exit region, so
that the extent of their applicability to the present problem
was not at first apparent. A similar German wartime report
(reference 6}, which did not become available until after the
present report was written, would have been more useful in
this respect because of the generality of its physical discussion,

Because of the particular shape of the tunnel eross sectior
a reasonably simple solution in terms of available functions
seemed unlikely; accordingly, the initial effort was directed
toward defining the problem in such & way that it could be
solved by analogy methods in an electrical tank. Identifica-
tion of the necessary boundary conditions appeared at first
to be somewhat perplexing; however, after recognition of
some of the basic physical phenomens, the boundary condi-
tions were readily clarified. The problem is thus considered
now to be fairly well understood, at least insofar as it can be
considered linear and uninfiuenced by turbulent mixing at
the free surfaces or by the irregular nature of the flow at the
exit. As will appear later, however, grave technical difficul-
ties exist in the exact solution by electrical-analogy methods
so that, for example, rigorous evaluation of the tunnel inter-
ference for the large helicopter in the Langley full-scale
tunnel, which problem instigated the present research, has
not yet been attempted.

After the boundary conditions were clarified, analytical
methods of solution were developed for two-dimensional and
circular open tunnels. These studies have been combined
with the discussion of the boundary conditions and the
electrical analogies to form the present report, which, it is
hoped, will serve to clarify basie concepts and establish a
sound basis for any further work. -

The report is divided into three parts. In part I, the
boundary conditions are defined and disecussed for the open
wind tunnel with closed entrance and exit sections, and an
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outline is given of suggested electrical analogies applicable
to the problem. In part II, analytical solutions are given
for various two-dimensional open-tunnel types, together
with numerous calculated results. In part ITII, a method of
solution for the circular open tunnel is given, together with
numerical results for the case of a lifting element concen-
trated at a point on the axis of the tunnel. The treatment
in every case is a linear one in which deformation of the jet

boundary is considered to be small. .

- The parts were essentially independently prepared.
Messrs. Gardner and Diesendruck contributed the analysis
of part II. Mr. Eisenstadt contributed part III. Dr.
Katzoff contributed part I and, in the absence of the others,
prepared the numerical results of part II, made several
minor revisions, and served as general editor of the report.

I. BOUNDARY CONDITIONS AND ELECTRICAL
ANALOGIES

In part I, boundary conditions for an open wind tunnel
are discussed with special reference to the effects of the
closed entrance and exit sections. It is shown that the
velocity on the free surface is not necessarily equal to the
velocity far upstream in the closed portion and that cross-
flows may exist in the free surface, unlike the case of the
infinitely long open jet. A basic condition—analogous to
the Kutta-Joukowski condition for the flow at the trailing
edge of an airfoil—is that the velocity be continuous at the
entrance lip. Electrical analogies that might be used for
-solving the flow in open wind tunnels are outlined. Two
types are described—one in which electrical potential corre-
sponds to velocity potential, and another in which electrical
potential corresponds to acceleration potential, -

BOUNDARY CONDITIONS

Résumé of Prandtl’s theory.—In Prandtl’s original dis-
cussion, in which the entrance and exit regions are neglected,
the open jet is considered as an infinitely long cylinder on the
entire surface of which the pressure is constant, whence,
by Bernoulli’s law, the velocity on the surface is constant.
If this velocity is considered as the sum of the undisturbed
tunnel velocity U and a small perturbation velocity (u,z,w)
due to the presence of a body in thejet, the condition is then that

U+ w2+ v?+w=U?4- 20u=Constant

from which it is concluded that % is constant over the
entire surface. Furthermore, since % is obviously zero far in
front of the body, it must be zero over the entire surface.

A corollary is that, on the jet surface, the perturbation
velocity normal to « (that is, the circumferential velocity)
is also zero, as is readily shown from & consideration of the
rectangular path SPQR on the swface of the jet. (See fig.
1 (a).) As has just been shown, the velocity component «
parallel to the lines SP and QR is zero; hence, the perturba-
tion potentials at points P and Q are the same as at points S
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(a} Infinitely long open tunnel.
(b} Open jet between closed entranco and exit regions.

FiGUrE 1.~Tllustrations for diseussion of surface perturbation veloclty in open wind tunnels,

and R, respectively. If points S and R are far upsircam
of the body their potentials will be equal, so that the po-
tentials at points P and Q are equal. The perturbation
potential is thus uniform over the entire surface, and only
perturbation velocities normal to the surface can exist at
the surface.

Modification of basic concepts.—If the closed entrance
region is near the body, as shown in figure 1 (b}, the preceding
discussion and conclusions no longer apply. Thus, although
w must still be constant ovey the entire free surface, it is no
longer necessarily zero; that is, the total velocity on the free
surface is not necessarily equal to the velocity far upstream
in the closed portion of the tunnel. The two velocitics will,
in fact, generally be unequal except in special cases whero
equality results from geometrical symmetry of the arrange-
ment. (For example, if a horseshoe vortex is located in the
horizontal plane of symmetry of the tunnel, the values of %
at the top and bottom of the tunnel would be expected 1o be
equal and opposite; but since 4 must be uniform over the
surface, it follows that u=0.) Furthermore, the velocities
in the jet surface normal to % (that is, the circumferential
velocities) are, in general, no longer zero (except for axially
symmetrical flows, such as that produced by a body of
revolution on the axis of a circular tunnel) so that two
surface points at the same longitudinal position, as P’ and
Q' (fig. 1 (b)), do not necessarily have the same values of the
perturbation potential.
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Entrance-lip condition.—Consider, for simplicity, the
symmetrical case of figure 1 (b), in. which the lifting element
is on the horizontal plane of symmetry of the tunnel. Since
% is zero on the free boundary, the perturbation potential is
constant along the elements AB, CD, EF, ., although,
as just indicated, if is not necessarily the same for all these
elements. This one boundary condition for the open sec-
tion—that the potential be constant along each of these
elements—does not suffice, however, to define the problem
uniquely. In fact, as will be obvious from the subsequent
discussion of electrical analogies, the potentials of these
elements may be quite arbitrarily assigned without violating
this condition or the boundary condition on the closed por-
tion of the tunnel (that the normal derivative of the potential
be zero at the wall). In order to avoid this lack of unique-
ness, further conditions must be sought. The mostimportant
of these is that the velocity be continuous (in particular,
not infinite) at the entrance lip (points A, C, E, . . .).
This condition takes cognizance of the fact that, because of
viscosity, the physical flow leaves the lip smoothly, just as
it leaves the trailing edge of an airfoil; the condition is, in
fact, strictly analogous to the Kutta-Joukowski condition
for the trailing-edge of an airfoil, which similarly takes into
account the basic viscosity effect and provides uniqueness
where otherwise an infinity of solutions would exist. It is
recognized that, just as the Kutta-Joukowski condition does
not always suffice to predict airfoil lift very accurately, the
corresponding condition for the open tunnel may similarly
oversimplify the entrancelip flow; however, as with the
airfoil, the condition is probably adequate where the flow
is not subject to an excessive pressure rise on approaching
the lip. References 4, 5, and 6 used the condition, and
reference 6, in addition, discussed it from the physical view-
point and compared it with the airfoil trailing-edge condition.

Concerning the downstream end of the open section, the
exit lip may be considered to correspond to the leading edge
of an airfoil and no effort need be made in an idealized flow
analysis to eliminate infinite values of % at this edge.

Jet contraction or expansion.—It has already been pointed
out that, with a body in the jet, the velocity on the free
surface is not necessarily equal to the velocity far upstream
in the closed portion. During the course of the investiga-
tion, it was noted that solutions could be obtained showing
a difference between these two velocities, even when there
was no body in the jet. Such a flow corresponds merely to
a confraction or expansion of the jet, as indicated in figure 2.
Thus, in figure 2 (&), the velocity on the free surface is lower
than the upstream velocity and remains so even as it ap-
proaches the exif, in spite of the gradual contraction of the
jet, because of the continuously increasing surface curvature.
The velocity suddenly increases at the exit lip and finally
is established at a value greater than that of the upstream
velocity. With reasonable ratios of entrance to exit ares,
the flows of figure 2 may be readily obtained experimentally.
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(a) Contracting jet. The pressure on the free surface exceeds both the upstream and down-
stream pressures but is very elose to the upstream pressure.

(b) Expanding jet The pressure on the free surface is less than either the up.tream. or down-
pressure but is very close to the upstream pressure.

FIGUEE 2.—Contracting and expanding jets (2 or § dimensions).

The significance of this expanding or contracting flow is
that it represents a solution that satisfies all the boundary
conditions previously discussed and is nevertheless undesir-
able. In order to avoid such solutions, a further condition
must accordingly be recognized; namely, that the veloeities
in the closed portions far upstream and far downstream of
the open section be equal.

It may be objected that in the normal design of an open
wind tunnel the exit section is made larger than the entrance
section. ‘The purpose of the increased area is to allow for
the reduced velocity toward the suriface of the jet resulting
from turbulent mixing with the surrounding still air. In-
creasing the exit area by other than the correct amount will
result in the type of flow indicated in figures 2 (a) or 2 (b)
with a corresponding velocity gradient along the center of
the tunnel. In any potential-flow solution these viscous
effects cannot be considered.

Spillage.—¥When an airfoil is tested at a high lift coefficient
in an open tunnel, the downward deflection of the jet may
result in appreciable spillage from the lower lip of the exit,
together with lack of contact of the main flow with the upper
lip. (See fig. 3 (a).) The air lost by spillage is replaced by
air (of, however, a lower total pressure) entrained in the
exit. Even without otherwise considering the distortion of
the free surface, these flow characteristics might seem too
much at variance with the previously assumed characteristics
to permit application of the theories being discussed. The
calculations of part II for the two-dimensional open tunnel
(that is, 2 rectangular tunnel with. closed sides but open top
and bottom) show, however,very little difference between the
tunnel-induced-downwash distributions for the tunnel with
two exit lips and the tunnel with one exit lip. That is, if
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figure 3 (a) is assumed to represent-a‘twe-dimensional flow,
the fact that the upper lip of the exit is out of the flow field
so that the lower lip takes over the entire burden of straight-
ening the jet does not greatly affect the induced downwash.

The effect of the exit lip on the flow phenomena is the least
clear of the various phases of the present problem. For open
wind tunnels having essentially unflared exits, similar to that
indicated in figure 8 (a), the suggestions of the preceding
paragraph are probably adequate. The exit of the Langley
full-scale tunnel, however, has a large bell mouth, and when
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Sa) Straight exit.
Bell-mouth exit.
(¢} Enclosed space beneath the lower {ree surface (two-dimensional tunnel).

FrourE 3.—Spillage from the lower lip of the exit.

airplanes are being tested at high lift coefficients a downward
deflection of the air off the lower part of the bell, roughly
as indicated in figure 3 (b), occurs. Whether the previously
suggested concepts or, indeed, any linear theory can serve
satisfactorily for this case seems questionable.

Unequal surface pressures.—An interestingmethod of avoid-
ing spillage suggests itself in the case of the two-dimensional
open tunnel: If the space below the tunnel is enclosed, an
excess pressure will be built up in this space, compared
with the pressure in the space above the upper free surface,
so that the flow will be pushed up sufficiently to eliminate
the spillage and insure precise contact of the lower free
surface with the lower exit lip. (See fig. 3 (¢).) The extent
to which a free two-dimensional jet can be deformed by a
pressure difference across its boundaries or, stated differently,
the extent to which a two-dimensional free jet will deform in
order to follow the only available path, is indicated by the
smoke-flow photograph in figure 4. The setup consisted
merely of & two-dimensional open jet with entrance and exit
sections displaced vertically relative to each other, arranged
between transparent side walls, and provided with enclosed
spaces above and below.

L-64877

FIGURE 4.—Two-dimensional jet with different pressures on the two free surfaces.
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Details of interest in the figure, in addition to the jet
deformation, are:

(1) Separation of the flow from the upper lip of the exit
becguse of the large angle of entry. A small bell mouth at
the exit lip might have prevented such separation.

(2) The rough fiow on the upper surface at the entrance,
compared with the smooth flow on the lower surface, reflects
the fact that the boundary layer approaching the entrance
is subjected to a rising pressure on the upper surface and a
dropping pressure on the lower surface.

(3} Because of turbulent mixing at the free surfaces, a
certain amount of the air in the closed chambers above and
below the jet is entrained in the jet. An equivalent quantity
must be released, or skimmed off, at the exit in order that the
total quantity in each chamber remain constant. This cir-
culating mechanism results in the apparent overflow at the
two exit lips. The return of the skimmed-off part to the jet
surface can be seen at the bottom of the photograph.

Tunnel without a closed exit—Some mention is made in
the subsequent discussion of the hypothetical open tunnel
having a closed upstiream entrance region but no closed exit
region, the open section thus extending downstream to
infinity. Calculations for such an arrangement (see part IT)
are generally simpler than for the actual tunnel with the
closed exit and give very nearly the same answer, provided
that the region of interest is much closer to the entrance
than to the exit, as is usually the case. For this arrangement,
solutions with an arbitrary contraction or expansion of the
jet cannot exist, so that no effort need be made to avoid
them. The solution for the general unsymmetrical case,
however, will show the jet velocity downstream st infimity
to be different from the velocity upstream in the closed part.
The possibility that, in the two-dimensional case, different
pressures might be assumed on the two free surfaces still
exists for this type of tunnel, but the resulting jet will have
a constant curvature after leaving the neighborhood of the
body.

An upstream condition for the ‘‘infinitely long’’ open
tunnel and a correction to the resulfs of reference 8—In
many discussions of the two-dimensional open tunnel, the
set of images indicated in figure 5 (a) is used to satisfy the
boundary condition that #=0, and the resulting flow shows
an. uptlow in front and an equal downflow in back with no
induced downwash af the wing itself. Actually, however,
if the jet issues from & horizontal closed entrance—no matter
how far upstream—it will remain essentially horizontal
(because it is not subjected to any vertical force) until it
reaches the wing. (See fig. 5 (b).) In order to eliminate the
undesired upstream upwash,a uniform downswash should there-
fore be added to the solution indicated in figure 5(a}. (Com-
pare reference 7, p. 304.) Addition of this downwash does not
affect the boundary conditions, since u is still zero at the
boundary. This case is discussed quantitatively in part II,

C
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(a) Deformation due to image system; no downwash at the wing itself,
(b) Undeformed. upstream flow; downwash at wing is half of that at infinity.

FiGURE 5.—T wo-dimensional open tunnel of infinite length.

where it is shown that the entrance-lip condition automati-
cally provides the correct answer.

Among the rectangular wind tunnels for which corrections
were given in reference 8 is a type with closed sides but open
top and bottom. The calculated corrections for approxi-
mately square cross sections are approximstely equal to those
for the completely closed tunnel, & surprising result in view
of the absence of any top or bottom constraint. The result
is actuelly in error, as was discovered in an experimental
effort to verify it (reference 9). In seeking to explain the
errors the author of reference 9 pointed out that the image
system used in reference 8 should have included an infinite
row of vortices at infinity, and he showed how, by taking
into account this row of vortices, the correct answer could
be obtained. It could not be shown, however, that the
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extent of this row of vortices is of a higher order of infinity
than is their distance from the origin, as is necessary if their
effect is to be considered. The method of the preceding
paragraph thus appears to be much simpler and more rigor-
ous in such cases than is a discussion of the image vortices
at infinity. One simply observes that the image system of
reference 8 provides an angle correction factor & of 0.25 for
the flow far upstream of the wing, whereas & should be zero
far upstream; a correction of —0.25 should therefore be
added to all values of & computed by this image system for
points within the tunnel. |

Summary of boundary conditions.—A basic physical
characteristic of the flow is provided by the condition that
the velocity be continuous at the entrance lip, which con-
dition also helps to.provide uniqueness. The velocity on
the free surface is not necessarily the velocity far upstream
in the closed portion; in fact, for the two-dimensional case,
it is even possible for the pressures on the two free surfaces
to be different from each other. Equality of the velocities
in the upstream and downstream closed portions has been
recognized as an additional condition. Neglecting the upper
portion of the closed exit may be desirable if the flow is so
depressed that it does not make contact with the upper
part of the exit. Neglecting the entire closed exit region
may appreciably simplify the problem without introducing
excessive inaccuracy if the region of interest is much closer
to the entrance than to the exit. In general, adequate
treatment of the exit (for large lift on the body in the tunnel)
seems very unlikely. _

The discussion in the preceding sections has concerned
mainly the physical flow conditions, and relatively little
interpretation in terms of boundary conditions on the per-
turbation potential has been given although such formal
interpretation would appear a trivial task. The reason that
this extension has not been made is that in a number of
instances (as will appear subsequently) slight modifications
of the basic viewpoint, leading to somewhat modified bound-
ary conditions, are desirable for convenience of solution.
Accordingly, the statements of the boundary conditions on
the perturbation potentials will be given when the solutions
are discussed.

SUGGESTED ELECTRICAL ANALOGIES
VELOCITY-POTENTIAL ANALOGIES

Basic concepts of the analogies.—In the analogies to be
discussed in the present section (none of which have yet been
constructed), the perturbation velocity potential in the
space within the wind tunnel is considered analogous to the
electrical potential in a dilute electrolyte solution contained
in a vessel of the same shape. An insulating material such
as Bakelite, the conductivity of which is negligible compared
with that of the solution, provides & boundary where the

normal potential gradient g—n is zero; and a metal, the con-

ductivity of which is practically infinite relative to that of

L

the solution, serves as a constant-potential boundary along

23

which the longitudinal gradient > is zero. In such a setup,

current is analogous to velocity except for a differenece in
sign (in the usual convention, current flows doswn a voltage
gradient whereas air flows up a velocity-potential gradient);
in order to remove this difficulty, the sign convention for
electrical potential is reversed in the following discussion.

For greater clarity of exposition, the two-dimensional
analogies are ftreated in detail, the three-dimensional
analogies appearing as reasonably obvious extensions or
modifications. It will be remembered, however, that any
application will be found in three-dimensional problems
inasmuch. as most of the two-dimensional problems can be
solved analytically. s

A two-dimensional vortex may be represented by {wo long
metal plates separated by a thin insulator. (Sce fig. 6 (a).)
A flow corresponding to a vortex located at the edge of the
plates is set up by applying a difference of potential across

2 -

LTI ra
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(4)

(2) Two-dimensional vortex showing current lines between the two plates.
(b) Two-dimensional vortex in a perturbation field having a horizontal velocity component.
(e) Three-dimensional element of lift. :
(d) Horseshoe vortex of finite span.
FIGURE 6.~Velocity-potential analogies gr tw%-dimensional and three-dimensional lifting
oments.
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the plates. If the perturbation flow that results from the
presence of the vortex in the tunnel has a horizontal velocity
component, this representation is no longer adequate because
it requires the potential to be uniform along each plate.
Rigor in this case would require that the plates be composed
of a number of separate sections with each pair separately
activated. (See fig. 6 (b).) In this way it is possible to
provide a potential difference between upper and lower
surfaces that is everywhere equal to the desired circulation
without requiring that the potential be uniform along the
entire upper surface or lower surface. A horizontal velocity
component normally occurs only when the lifting vortex is
asymmetrically located in the tunnel. For simplification,
only the simpler representation of figure 6 (a) is used in the
remaining sketches. _

The element of Lift in three-dimensionsl flow is the horse-
shoe vortex of zero span, which is the same as a semi-infinite
line of doublets. It may be represented by a pair of long
narrow metal strips separated by an insulator. (See fig.
6 (c).) As in the two-dimensional analogy, if the lifting
element is asymmetrically located in the field, the strips
must be made up of short pieces with each pair separately
activated. The horseshoe vortex of finite span is repre-
sented as in figure 6 (d), provided that there are no appre-
ciable perturbation velocities in its plane.

Evaluation of interference velocities.—The vertical veloc-
ity component in the tunnel corresponds to the vertical
voltage gradient in the electrolyte, which can be determined
by measuring the voltage difference between a pair of short
wire electrodes mounted one above the other a fixed distance
apart. The tunnel interference at any point is found by
measuring this voltage difference (relative to that across the
two plates representing the vortex) first in the simulated
tunnel and then in a large tank for which the boundary
interference is either negligible or so small that it can be
adequately computed by simple methods. Since the theo-
retical flow field for the second case is known, the ratio of
these two gradients, together with the distance from the pair
of wires to the lifting vortex, should suffice to evaluate the
boundeary interference. The distance between the pair of
wires need not be measured because only the ratio of the
gradients is required. Similarly, the exact design and
dimensions of the simulated lifting vortex are of no signifi-
cance, provided that the gradients are determined at reason-
able distances from it. In general, boundary interference
at the vortex itself cannot be found directly by this method
but may be determined by interpolation between or extra-
polation from the neighboring points.

Two-dimensional closed-open funnel—For simplification
of the nomenclature, the open tunnel with closed upstream
region but without a closed exit is designated the closed-open
tunnel. The open tunnel with closed upstream and down-
stream regions is designated the closed-open-closed tunnel.

Figure 7 (a) illustrates the setup for a two-dimensional
closed-open tunnel with a vortex on its center line. Shaded
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(a) Vortex on the center line.
(b} Upsymmetrieally located vortex.

FIGTRE 7.—Velocity-potentizl analogies for the two-dimensfonal closed-open tunmnel.
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lines indicate insulating boundaries (Where §= 0) andheavy

unshaded lines indicate metal boundaries on which @ is
constant. The upstream closed portion should be so long
that the potential is essentially uniform at its upstream end;
the Iength indicated on the figure should suffice. The open
region should similarly be so long that the vertical flow
between the vortex strips and the boundary strips no longer
changes with distance downstream; again, the length indi-
cated on the figure should suffice. From the condition of

velocity continuity at the entrance lips and the fact tha.tg—f

is zero along the free boundaries, it follows that %’ must be

zero at the edges of the two closed boundaries. The poten-
tials on the two free boundaries must, therefore, be adjusted
until the difference between the potential of each and the
potential of a thin feeler electrode just upstream of its edge
is zero. For the symmetrical condition shown, the single

variable voltage source indicated will provide zero g—f

at both edges simultaneously.

Figure 7 (b) illustrates the setup for the two-dimensional
closed-open tunnel with the vortex in an off-center position.
A single variable voltage source across the two free bound-
aries is now no longer capable of simultaneously satisfying
the continuity condition at both edges, so that an additional
variable voltage source and an upstream electrode are
required. The current in the closed part of the tunnel flowing
into this upstream electrode corresponds to an upstream
perturbation velocity. This upstream perturbation velocity
constitutes the previously mentioned difference between the
velocity far upstream in the closed part and the velocity on
the free surface. The concept here is slightly at variance with -
previous discussion, which considered a perturbation veloeity
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along the free surface, with the far upstream velocity appear-
ing as the undisturbed velocity U/. As the analogy is set up,
however, no perturbation velocity may appear along the free
surfaces because they are at constant potential; hence, the
total velocity on the free surfaces must be considered as the
undisturbed velocity U and any difference between this
velocity and the velocity far upstream appears as an up-
stream perturbation velocity. As appears in part II, this
viewpoint is also found convenient in the analytical solution
of these problems. _
Two-dimensional closed-open-closed. tunnel.—The setup
for the two-dimensional closed-open-closed tunnel with a
vortex on the center line (fig. 8 (2)) is an obvious modification
of the corresponding setup for the closed-open tunnel. The
gsame would be true for the off-center vortex except for the
necessity of satisfying the condition that the velocities in
- the upstream and downstream closed regions be*equal. Thus,
the setup of figure 8 (b) provides an upstream perturbation
velocity but no downstream perturbation velocity and can-
not, therefore, solve the problem completely. An additional
flow, found by the setup of figure 8 (¢), must be included.
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(2) Vortex on the center line.
(b) Unsymmetrically located vortex (incomplete representation).
(¢} Expanding or contracting jet.

FraurE 8.—Velocity-potential analogies for the two-dimensional closed-open-closed tunnel.
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An electrode is here located at both the upstream and down-
stream ends, and the potentials relative to the free boundary
are so adjusted that the entrance-lip condition is satisfied.
It is apparent that in order to satisfy this condition the
downstream current flow will be much greater than the
upstream current flow; that is, the downstream perturbation
velocity for a contracting or expanding jet is much greater
than the upstream perturbation velocity. Because of this
difference, & suitable amount of the flow of figure 8 (¢) may
be added to that of figure 8 (b) to produce equal upstream
and downstream perturbation velocities.

Displacement of the free surfaces.—The current density
normal to the surface of a metal plate representing a free

surface is proportional to ? and corresponds to the local

vertical perturbation velocity. The total vertical displace-

ment at a point on the free surface is then given byf%%) dxz

integrated from the entrancelip to the point. In particular,
the integral along the entire lower free surface of a closed-
open-closed tunnel represents the displacement at the exit
lip and it may be measured by means of an smmeter in the
line that goes to the lower metal plate.

If the pressure on the lower free suiface can adjust itself
so that the displacement at the downstream end is zero, the
longitudinal perturbation velocity at the lower surface will
be different from that at the upper surface. If the perturba-
tion velocity on the upper surface is taken as zero, that on
the lower surface will be negative, so that the potential on
the lower surface must drop uniformly from entrance to exit.
Such a variation could be accomplished if the lower surface
were represented by & number of short metal strips instead
of a single plate:— - :

Three-dimensional closed-open and closed-open-closed
tunnels.—The analogies for the three-dimensional tunnels
are obvious modifications of those for the two-dimensional
tunnels. The free boundary may not be simulated by a single
metal cylinder because, as was previously noted, diflerent
elements of the free boundary do not have the same potential,
although the potential is constant along each element. The
free boundary must thus be simulated by a number of longi-
tudinal metal strips, insulated from each other, with a feeler
electrode immediately in front of each. When the lifting
element lies in the horizontal plane of symmetry, the en-
trance-lip condition may be satisfied without an additional
electrode. If the lifting element is not in the horizontal
plane of symmetry, an upstream electrode will be needed,
with the potential of each strip adjusted relative to this
electrode. For the unsymmetrical closed-open-closed anal-
ogy, the requirements that upstream and downstream
velocities be equal necessitates further measurements with a
setup corresponding to that of figure 8 (c).
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ACCELERATION-POTENTIAL ANALOGIES

Basic concepts of the analogies.—The pressure has the
properties of a potential—designated acceleration potential—
in a field consisting of a small perturbation flow superposed
on & uniform stream. If the pressure in the undisturbed
stream is taken as zero, then the perturbation velocities are
related to the pressure by the following equations:

i L ol T

O - ap
L—pfm P gi— l’f dx

_1 ap
J N dt—— S 2y
where
P density
4 time
2 pressure

Since, by the first equation, % is proportional to p, it is simpler
merely to consider the perturbation velocity u itself as the
potential, with » and w given by the following equations:

u—f ——dx

T Qu
w== . adr

and

The necessity of performing an integration in order to de-
termine v or w is a basic disadvantage of the acceleration-
potential analogy compared with the velocity-potential
analogy in which » and w are measurable directly.

In the analogies to be discussed in the present section, the
perturbation velocity % is considered analogous to the elec-~
trical potential in a dilute electrolyte solution. A metal
serves as & boundary along which « is constant, and the loeal

intensity of current flowing into it gives a—-a:'; an insulator

serves as a boundary where g—;” is zero. The lifting element

in either two or three dimensions is represented by a pair of
short metal plates separated by an insulator; when the upper
plate is maintained at a higher potential than the lower plate,
the arrangement represents a thin airfoil with suction (large
u) on its upper surface and pressure (small or negative %) on
its lower surface. The current at each of the two plates
should be the same in order that the slope of the airfoil sur-
face (proportional to ») be the same on both upper and lower
sides. In order always to satisfy this condition the voltage
source activating the lifting element should not be tapped
to any other electrode in the field.
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Two-dimensional closed-open tunnel.—The setup for the
two-dimensional closed-open tunnel with the lifting element
on the center line is shown in figure 9(a). The walls of the
upstream closed region are represented by insulators, which

establish that %=O at every point; hence, the condition

that -v=fr —g—;—dx=0 at every point on the closed boundary is

satisfied. The two free boundaries are represented by metal,
and electrically connecting them, as shown, satisfies the
further condition that they have the same potential (the same
u#). 'The flow of current into the lower boundary then equals
the flow of current out of the upper boundary, so that the
ultimate downstream value of » will be the same on both up-
per and lower boundaries, as is desired. In fact, for the
symmetrical case illustrated, the value of » will be the same
at all pairs of opposite points on the two free boundaries;
so the boundaries will be everywhere parallel. No special
attention need be paid to the entrance lips; the entrance-lip
condition is automatically satisfied since the potential u is
continuous at these points (although the potential gradients
at these points are infinite).

For the off-center position of the lifting element (fig. 9 (b))
no modification of the circuits is needed. The difference
between the potential in the upstream closed region and the
potential of the free boundaries, which is the upstream per-
turbation velocity %, is measured with the aid of the probe P.
As in the symmetrical case, the ultimate downstream value
of » will be the same for both the upper and the lower bound-
aries; however, it is no longer true that the two boundaries
will be everywhere parallel, and the ultimate width of the .
jet will be different from the width of the closed part.

Two-dimensional closed-apen-closed tunnel—The value
of » at the downstream end of the free boundary is given by
the total flow of current into the metal plate and, in general,
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(a} Lifting element on the center line.
(b} Unsymmefrical location of the lifting element.

FIGURE 9.—A.cceleration-potential anslogies for the two-dimensional closed-open tunnel.
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is not zero. At the lip of the closed exit, however, » must
be suddenly reduced to zero in order for the flow to follow
the solid boundary; hence, a short electrode must be added
at the exit lip, and as much current must be forced out of it
as flows into the long electrode that represents the open

boundary—that is, the integral of g—; dz along the free bound-

ary must be canceled at the exit lip. The setup (fig. 10 (2))
therefore shows a voltage source to supply this current and
means for measuring and equalizing the current flow into
adjacent electrodes. If these additional short electrodes
are omitted, the setup will correspond to a tunnel the exit
section of which has been alined with the deflected jet (fig.

10 (b)) because the condition that g—;"=0 on the closed exit

boundary wculd merely permit » to remain at the value it
had at the end of the free boundary.
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(2) Lifting element on the center line,
(b) Tunnel arrangement thal correspands ta omitting the additional short strips.
(¢} Expanding or contracting jet.
d) Curving jet.

FIGURE 10.—Acceleration-potential s,na,]ogiegngtl)r the two-dimensional closed-open-closed
tul .
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For the off-center position of the lifting surface, a similar
setup is used and, as before, probes in the regions far up-
stream and far downstream are used to determine the poten-
tial v in these regions relative to the potential of the free
boundary. Since these potentials far upstream and far
downstream will not be equal, an additional perturbation
field must be provided such that the sum of the two fields
will have the same potential in the two regions. This
additional perturbation field, which corresponds to a con-
traction or expansion of the jet, is provided by the setup
shown in figure 10 (c). It is clear from this figure that the
downstream perturbation potential is much greater than the
upstream perturbation potential; this result corresponds to
that indicated in the velocity-potential analogy.

The condition in which the pressure on the lower free
surface is higher than that on the upper free surface is casily
represented by applying a voltage difference between the
two surfaces. (See fig. 10 (d).) The corresponding dis-
placement of the lower surface, however, is not so readily

obtained. The vertical velocity at every point is fb
so that the displacement at each point is f f oy dx dz. In

%
order to accomplish this integration e must be determined

at points along the boundary, perhaps by breaking the long
plate into a number of short pieces and determining the
current flowing into each.

Three-dimensional closed-open and closed-open-closed
tunnels.—The analogies for the three-dimensional tunmels
are again obvious modifications of those for the two-dimen-
sional tunnels. For the closed-open analogy, the free bound-
ary may be represented by a single cylinder of metal (fig.
11 (a)). For the closed-open-closed analogy, the free
boundary must be represented by a number of separate
strips (fig. 11 (b)) in order that the total current into cach
strip may be measured and an equal current forced out of the
short strip immediately behind it. Contraction or expansion
of the jet is represented as in the two-dimensional case, but
thé setup that would correspond to different pressures along
different strips seems to have no practical significance in the
three-dimensional case.

Some form of this acceleration-potential analogy is prob-
ably the most convenient for solving problems similar to
that of the helicopter in the Langley full-scale tunnel.
Simply neglecting the exit, as with a closed-open tunnel,
permits the free surface to be represented by a single sheet,
of metal and eliminates any measurements of current flow to
or from the surface. Improved accuracy should be aitain-
able by cutting the sheet into two parts with two short strips
at the rear. (See fig. 11 (c).) The need for many strips
seems unlikely, at least in view of the previously mentioned
uncertain definition of the physical flow in the region of the
exit.

Correspondence between velocity-potential and accelera-
tion-potential analogies.—As has already been indicated,
the acceleration potential is identical with the 2-component
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—

a)

(b)

{c)

(a) Closed-open tunnel. . 3
(b) Open section represented by many longitudinal strips.
{¢) Open section represented by only two longitudinal strips.

FIGTRE 11.—Acceleration-potential anslogy for three-dimensional elosed-open tunnel and two
approximate acceleration-potentizl analogies for t imensional closed-open-closed
tunnels. The closed-open analogy may also be considered as an approximate analogy for
the closed-open-closed tunnel.

of the perturbation velocity and is hence merely the
z-derivative of the perturbation-velocity potential. It is of
interest to point out the related fa¢t that the acceleration-
potential analogies are, in a sense, the z-derivatives of the
velocity-potential analogies. For example (see fig. 12},

(1) For the velocity-potential analogy, an infinitely long
double layer represented a lifting element located at its
forward edge. The. difference between two such double
layers, of which one is shifted slightly relative to the other,
is merely the short double layer that was used in the
acceleration-potential analogy.

(2) For the velocity-potential analogy, the free boundary
consisted of constant-potential strips on which the potentials
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(B) .

(a) Representation of lifting element.
(b} Representation of open boun in closed-open-closed tunnel.

FiGTRE 12.—Acceleration-potential analogies as the difference between fwo veloeity-potential
analogies slightly shifted relative to each other.

were so adjusted that the gradient was zero at the leading
edge. If each strip is now shifted and subtracted, there
remains & long strip, with a short strip at the front and back.
Since, in the velocity-potential analogy, the gradient was
zero at the entrance lip, the short strip at the front may be
neglected. The remainder corresponds to the arrangement
used in the acceleration-potential analogy, and the fact that
the total current after the subtraction must be zero corre-
sponds to the fact that the total current out of the short
strip must be made equal to the total current into the long
strip.

(8) When the lifting element was off-center, the velocity-
potential analogies required electrodes upstream and down-
stream with uniform current flow along the upstream and
downstream closed regions. That the subtraction eliminates
these current flows corresponds to the fact that no upstream
or downstream electrodes are used in the acceleration-
potential analogies.

TECHNICAL DIFFICULTIES

It should be pointed out that the analogies herein described
may be rather unwieldy, experimentally. Even for the
simplest types of analogies, the literature indicates con-
siderable uncertainty as to the most satisfactory electrolyte
and electrode materials, and appreciable difficulty in balanc-
ing capacitances (alternating current is generally used in
analogies in order to minimize polarization at the electrodes).
In the present analogies, the need for separate current sources
that are esactly in phase and the large capacitances that
will certainly characterize the vortex and the open-boundary
representations should greatly complicate the technique.
Perhaps the use of direct current instead of alternating
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current, with nonpolarizing electrodes (as platinized plati-
num}, would be a more practical approach in this respect.
Simultaneously satisfying the entrance-lip condition at &
number of points around the inlet (or satisfying the cor-
responding exit condition for the acceleration-potential
analogies) may also turn out to be very difficult.

RESUME OF PART I

The most significant points of the preceding discussion of
open wind tunnels and their electrical analogies are as
follows:

1. Continuity of velocity at the lip of the entrance cone is
8 basic characteristic of the flow in an open wind tunnel.

2. Equality of the velocities in the upstream and down-
stream closed regions-is a further condition on the tunnel
flow if extraneous longitudinal pressure gradients are to be
avoided.

3. The velocity on the free surface need not be the same

as the velocity in the closed upstream region. In general,
the two velocities are the same only when the lifting element
lies in the plane of symmetry of the tunnel.
4. For the two-dimensional open tunnel the velocities on
the two free surfaces need not be equal. If the space below
the lower free surface is closed off, the pressure on the lower
free surface will adjust itself so that the displacement at
the exit lip is zero.

5. Considerable uncertainty exists with regard to condi-
tions at the exit or the mathematical equivalents of these
conditions. Correspondingly, certain compromises in com-
plying with the idealized downstream conditions may be
justified in & determination of boundary interference.

6. In any analysis that neglects the closed entrance and
exit regions, the condition of zero upstream induced  flow
must be retained.

7. Electrical analogies of either the velocity-potential or
the acceleration-potential type may be devised to correspond
to most of the problems discussed.

8. In electrical analogies that represent velocity potential
by electrical potential, the condition of continuity at the
enfrance lip appears troublesome, especially for three-
dimensional tunnels; however, the exit conditions are easily
represented.

9. In electrical analogies  that represent acceleration
potential by electrical potential, the entrance-lip condition
is automatically satisfied but fulfillment of exit conditions is
troublesome. Rough approximation of the exit conditions
may, however, be adequate for many purposes.

10. Acceleration-potential analogies are experimentally
simpler than velocity-potential analogies.

| q:(¢0)
a
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II. TWO-DIMENSIONAL TUNNELS

In part IT, boundary-induced velocities in two-dimensional
open tunnels are derived with special reference to the cffects
of the closed entrance and exit regions. Of special interest
is the fairly simple mathematical procedure introduced for
solving flow problems of this type. The cases treated are:

(1) Tunnel with a closed entrance (upstream) region but
without a closed exit region

(2) Tunnel with a closed entrance region but with only one
exit lip (corresponding to a condition in which the downward
deflection of the flow is so large that the flow males contact
only with the lower exit lip) .

(8) Tunnel with closed entrance and exit regions

(4) Same as case 3, but with different pressures on the
two free surfaces
Numerical results are given for all cases.

SYMBOLS AND DIMENSIONS

Each tunnel is idealized as a strip of uniform height £,
having a stream velocity V, and containing a point vortex

‘of strength I'. For simplification of the present devclop-

ment, lengths and velocities will be made nondimensional
by dividing by % and V, respectively, and the vortex strength
will be made nondimensional by dividing by AV. Essen-
tially, then, the solutions will be developed for a vortex of
strength Iu:hLV in a tunnel of unit height; and in the follow-
ing list of symbols the lengths in the complex planes are
in terms of A, and the complex velocities are in terms of V:

h tunnel height

14 tunnel velocity

¢ complex variable of physical plane (¢-+13)

£ location of vortex in ¢-plane

z complex variable of transformed plane (z-}1y)
2, location of vortex in z-planc

q complex velocity in physical plane (z—q»)

Q complex velocity in transformed plane (u—1v)
A,B,C,M,N real constants

T vortex strength
| nondimensional vortex strength (71.%’)
q:(¢,50) induced complex velocity at ¢ when vortex

is at &
induced complex velocity at ¢,
abscissa of exit lip in transformed space
wy - a complex velocity in the form of an elliptic
integral of the first kind
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g 8 complex veloeity in the form of an elliptic
integral of the second kind

W3 a complex velocity

[ variable of integration

G - function defined by equation (2)

KK

complete elliptic integrals of the first kind,
with modulus 1/a

when not followed by parenthesis, complete
elliptic integrals of the second kind, with
modulus 1/a; with upper limit indicated
in parentheses, incomplete elliptic integrals
of the second kind, with modulus 1/a

incomplete elliptic integrals of the first kind,
with modulus 1fe, and with upper limit
indicated in parentheses

P. real part

p. imaginary part

airfoil chord

¢ airfoil lift coefficient

€ tunnel-induced downwash angle, radians

Us horizontal perturbation velocity at free

boundary

E,E

BOUNDARY CONDITIONS

The two-dimensional tunnels discussed are considered to
have their fixed and free boundaries parallel to the real axis
with the msain tunnel flow from left toright. The physical
plane (in which lengths and velocities have been made non-
dimensional as just described) will be designated the i-plane,
with the complex perturbation velocity ©—1v, or ¢(¢), subject
to the following conditions:

(1) On each fixed (or closed) boundary, I.P. ¢(f)=—v=0.

(2) On each free (or open) boundary, R.P. ¢({)=u=0o0ra
constant.

(3) At each lip of the closed entrance section, ¢({) is
continuous.

CASE 1—CLOSED-OPEN TUNNEL

Total perturbation velocity—By the transformation

n

=gt (1)

the tunnel in the g-plane, represented by an infinitely long
strrp of unit height, is transformed to the upper half of the
z-plane. The correspondence between points is shown in
figure 13.
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FIGURE 13.—Physical and transformed spaces for two-dimensional closed-open
tunnel of unit height. z=e=t,
The complex veloeity (rather than the more usual complex
potential) is considered to be retsined in the transformation,
and the problem is thus to find a funcfion ¢(z), where

u—19=0(2)=¢(¢)
such that
(1)} On the closed sections of the boundary, that is, for 2
real and [£[<1,
I.P.Q(z)=0

(2) On the open sections of the boundary, that is, for zreal
and |2|>1,
R.P.Q(z)=0

(3) For z=+1,
Q(z)=0
(4) @Q(z) is finite at infinity.

Consider the complex veloeity &(z) corresponding to a
vortex at z, and its reflection at z;:

G’(z)=i< L ) @)

22 Z—_Z-)_

This function, which is of order 1/z? at infinity, satisfies
conditions (1) and (4) but not (2) and (3). Funections of the
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1—2%, 24/1—2%, ..

form

order z?; therefore, either of the products @1 —2% Gz /1—
or a linear combination of the two satisfies the four condi-
tions and has a pole of the first order at z,. These facts
suggest that the desired velocity function is of the form

—z2t (3)

O Cr

where A and B are as yet undetermined real constants.
The values of A and B are to be determined such that the
pole at z; represents a vortex. of strength I' in the {-plane.

Thus
=gy dr = gﬁQ(z) 4 g, ——gicz( )42

where the integral is taken about the point.z;. By Cauchy’s
integral formula
a2
=—2(4+Bey Y12 @

The values of I and 2 are known, so that this complex
equation can be solved for the two real constants A and B.
Substituting these values in equation (3) will ‘thus give the
desired complex velocity funection.

Tunnel-interference velocity—The tunnel-interference ve-
locity is defined as the difference between the total perturba-
tion velocity ¢(¢) due to the presence of the vortex in the tun-
nel and the velocity due to & vortex in an unbounded medium;
that is, the tunnel-interference velocity g:(¢,¢1) is

qd¢, =1 (2_1_2;

2(5‘ 5‘1)
(5

If the wvortex is on the axis of the tunnel (that is, if
§’1=Er|'%) then from equation (1), z;=41,, and

equation (4) gives
A=0 )
I (6)
2v14y?

If the pomt of evaluation is also on the axis (that is,

F=¢+ —; whence z—ﬂ,y) then

Y 2+1 7:]:‘, . .
iVl T aa—g @

0 (b+p btg)=—ir

Thus, if the vortex is on the axis, the interference velocity at
all points on the axis has only a vertical component.

The interference velocity at the vortex itself is the Limit of
expression (5) as z approaches z;. The term containing 2—3,
offers no difficulties and its limit is readily evaluated:

lim— "’El(A+Bz)\/1_——z”=—¥-§%(A+le)\/_l——_z~f*"=E€l

22— 2—

. satisfy conditions (1), (2), and
(3). At infinity, 1/1——-22 is of order z and z+4/1—2%is of

This expression is of the form-gfor 2=z,

" where the last equality follows from equat,lon (4). The
remamder of equamon (5), after =(f— —§) is replaced bv

2 t
.| (A+Bz)4/1—2 T
q ( + )'\ + —_
2—2, 2
2 log—
- zl

(A4Bz)y1—22log 231+% (z2—2))
(z—2) 102;23

log Z

i

Differentiating

numerator and denominator, according to L’Héspital’s rule,
still leaves both equal to zero at 2=z (that the derivative of
the denominator is zero at z=¢, is obvious; that the deriva-
tive of the numerator is also zero at z=2, can be verified with
the aid of equation (4)). A sccond differentiation yields the
following expression for the limit as z approaches z;:

~(A+Bz)yT—z7

_2(A+Bzjed +2anm
'\"’1'—721 _
221

)

This fraction can be greatly simplified by use of equation (4),
and the result, added to the previously derived limit, gives
the desired correction at the vortex:

v 2%
41y, |

(8)

hm 2, f=q:$)= [ +2(1 2)+B\‘1—21 F ot

For the special case in which the vortex is on the tunnel
axis (2==1y), this expression reduces to the following form
(after substituting for B from equation (6)):

iy ;
a(eg) - ©)

Upstream perturbation velocity.—If the vortex is not on
the tunnel axis, A will not be zero (compare equation (6)).
The tunnel interference velocity far upstream in the closed
part of the tunnel is found by putting f=— » and 2=0 in
equation (5), which then reduces to

|21|

which is real. For this unsymmetrical case, therefore, a finite
longitudinal perturbation velocity is found far upstream in
the closed part. As was pointed out in part I, such results
appear because the problem was set up so that thelongitudinal
perturbation velocity on the open boundary is zero. If
the velocity far upstream in the closed part is to be taken
as the base, the result means merely that the longitudinal
velocity on the open boundary exceeds this base velocity by

]z_j;l and that there is a corresponding difference in pressure
between the closed part and the space surrounding the jeb.
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Limiting case of completely open tunnel.—With increasing

distance of the vortex from the closed enfrance (that is,

s

. . . r
with increasing ), expression (9) approaches —lT- As was

pointed out in part I, the image system normally used to
satisfy the boundary condition on an infinitely long, open,
two-dimensional tunnel produces no induced flow at the
vortex itsel, and only after introduction of the additional
condition that the upstream flow be horizontal is this value

el

i . . .
of —lT for the induced-flow correction obtained. In the

present development, however, it is seen that the condition of
continuity at the entrance lips automatically takes care
of this condition on the upstream flow direction, even when
the entrance and the vortex are infinitely far apart.

No further discussion of the completely open tunnel will be
given here inasmuch as this case has been adequately
treated by the method of images. (See reference 6, p. 302.)

CASE 2—TUNNEL WITH ONE FIXED EXIT BOUNDARY

Perturbation velocity.—As before, the transformation
=e= transforms the tunnel, considered as an infinite strip

of unit height, into the upper half of the z-plane. The
correspondence between points is shown in figure 14. The
conditions on the complex velocity @(z) are:

(1) On the real axis, LP.Q¢(z)=0 for —1<z <1 and
for z>a.

(2) On the real axis, R.P.Q(z)=0 for z<—1 and for
1<=z<a.

(3) For 2=+1, @(2)=0.

{4) (z) is finite everywhere in the upper half-plane except
at z=q and at z=z,. As noted in part I, @(z) will be infinite

at z=
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F1GURE 14.—Physical and transformed spaces for iwo-dimensional tunnel of unit height
with one exit boundary. z=e={.

The function @(z), given by equation (2), will again be
used as a factor that is real along the entire real axis and
has the desired type of singularity at z,. The functions

1 —g2
_/ £ a-ndz

ary as z passes throucrh +1 or through a, and, furthermore,
are zero at z=+1 and infinite at z=a. At infinity they
are of order z'/* and z%2, respectively. Therefore, as before

and G (z)z—\/ zz-

satisfies the preceding eonditions and has a pole of the ﬁr:.t
order af z,. @(z) is therefore of the form:

—2 ch&nge from pure real to pure imagin-

& linear combination of G(é)‘\/

lz2

Qz)= z( (i0)

The real constants A and B are determined by the seme
condition as before, which gives

9(A+B’1) 1—z (11)

a—ze;

V=—

Tunnel-interference velocity.—The interference velocity
gi(¢,61) is the difference between the perturbation velocity
and the velocity due to a vortex located at the same point in
an unbounded medium:

0t =i (32—

2y 2 —‘Z]_

—z? IV
5 @B [ e ey

(12)

- This expression does not simplify appreciably if the vortex

is Jocated on the axis, and the interference velocity at 2 point
on the axis due to a vortex on the axis is not normal to the
axis.

The interference velocity at the vortex itself is the limit
of expression (12) as z approaches z. Proceeding as in the
preceding case gives

IVa 1—z72, Vg,

. I’
gf)=1 [2(1_511)_4((.1-—21)_!_3 a—z, ' 4iy, (13

It may be shown with the aid of equation (11) that this equa-~
tion reduces to that for the closed-open tunnel as a goes to
infinity.

CASE 3—CLOSED-OPEN-CLOSED TUNNEL

Perturbation velocity.—The transformation z=e=t trans-
forms the tunnel space into the upper half of the z-plane with
correspondence between points as indicated in figure 15.
The boundary conditions on the complex velocity @(z) are:

(1) On the real axs, I.P.Q(z)=0 for |z|<1 and for [z[>a.

(2) On the real axis, R.P.Q(z)=0 for 1<]z|<a.

(3) For z=+1,0(z)=0.

(4) Q(2) is finite everywhere in the upper half-plane except
at z=21a and at z=2,.

(5) G(0)=Q(=), (this equation corresponding to the
condition noted in part I that the perturbation velocities
in the upstream and downstream closed regions be the same).
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FIQURE 15.—~Physical and transformed spaces for symmetrical two-dimensional closed-open-
closed tunnel of unit height. z=ex},

The function G(z) given by equation (2} is again used as

a factor of @(z). The functions

1—z2? 1—z

a.z——-zz) 2 az 22’ aand
.2 . . . .

2? -‘/01'2__22 satisfy conditions (1), (2), and (3) and are of

orders 1, 2z, and 2* at infinity, respectively. By the same

reasoning as before, :

1

0@)=i (325575 (4+Ba+02) VAEZ as

T 2—2
The condition that the pole of the first order at 2, represents
s vortex of strength I is

2(A+BZL+0212) 1’—'21

I=—
2 a?—z,*

Condition (5) is satisfied by equating the two forms of
equation (14) for 2z equal to zero and equal to infinity. Thus

“Tef e
1im Q= =lim U (A4 B2+ 029 3755
='—'2’y10

whence, by condition (5)
—2y1 A

[24]* -E=—2'y10
or
A
O(=¢"'|21|2 (18)

as)
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The complex equation (15) and the real equation (16) suffice
for evaluating the three real constants 4, B, and C in
equation (14).

"Tunnel interference velocity.—The tunnel interference
velocity is

1

Qi(f, Sy=1% +

22

N

P 17

If the vortex is on the tunnel axis, that is, if 2 =1y, equa-
tion. (15) gives

N O (e T
1442
4 (18)
Tyt

Comparing this last equation with equation (16}, which
reduces to the following form for 2z =1y,

4

=g
. a'!h

shows that for this symmetrical case
A=C=0

since, asis clear from figure 15, a%1. Theinterference veloc-
ity at a point on the axis (2=1y) due to a vortex on the axis
is thus

% 4 i
a4 (E‘["ﬁt & +§)= —yz__?’;,?fz

T+y? a?+y2 i
a*+y* 1492 +21r(£—&'1) (19)

which is normal to the axs.
The interference velocity at the vortex itself is the limit
of expression .(17) as z approaches ;. Proceeding as before

gives
T/ TVz,2 a?—1
} gf(rl)—?/ + 2 (0‘;2'—212)(1—212)-'-
I‘ 21 e
(B+2021)-\/ 4%% (20)

. For the case in which the vortex is on the axis (z,=iy,)
the normal! velocity at the free boundary (z=2z, where
1<z<a) is given by

| Q(m)=i< z—iy, x+zy1)

Q(z)—xf“:?g Bx\/ " (21)

1—2°
a2__m2

or
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CASE 4—CLOSED OPEN-CLOSED TUNNEL WITH UNEQUAL
PRESSURES ON THE FREE SURFACES

Boundary conditions.—As indicated in part I, the two-
dimensional closed-open-closed tunnel may develop unequal
pressures on the two free surfaces if a closed space exists
below the lower free surface. Within the limits of the
present linear theory,this pressure difference corresponds to
superposing on the flow discussed in the preceding section an
additional perturbation velocity field @(z) that

(1) Has no singularities within the tunnel

(2) Satisfies the condition of continuity at the inlet lips

(3) Has a horizontal component equal to, say, +1 on the
upper free boundary and —1 on the lower free boundary

(42) Has no vertical component on the closed boundaries

(5) Is zero at infinity upstream and downstream
Rewritten as conditions on the complex velocity @(z) in
the z-plane (fig. 15), these conditions become:

(1) Q(z) has no singularities in the upper helf of the
z-plane.

(2) Q(z)=0at z==L1.

(3) On the real axis, @(z)=
Qz)=+1 for —a<le<<{—1.

(4) On the real axis, I.P. @(2)=0 for |2z|<1 and for
|2} >a.

(5) {z)=0 for z=0 and for e= «.

Outline of method.—Consider the following two functions
of z:

—1 for 1<z<e, and

w

L 7=
= %
0 Y(1—23(a’*~2%

z az_zz
"l.b&—ﬁ —" 1—2¢ dz

They can be considered as complex velocities having the fol-
lowing properties along the real axis (compare reference 10):

ay is real between 1 and —1; between 1 and ¢ or between
—1 and —a, its real part is constant but an imaginary part
is introduced; beyond ¢ or —a, the imaginary part
is constant while the real part approaches zero;
R.Pary(z)=—R.Pay(—2z); 1.Paw,(2)=L.Paw(—2z).

s has the same properties as w; except that beyond «
and —ea its real part approaches «= and — «, respectively.

Maps of the two functions are shown in figure 16. It
should obviously be possible to find a linear combination of
these two functions, M, +Nw,, such that for 1<{z<a

R.P.(Mw;,+Nwy)=—1

for —a<lz<<{—1

R.P.(Mw,+Nw)=+1

and beyond @ or —a
LP. (Mw,+Nw)=0

A simple additional function w; to be discussed subsequently
is needed to satisfy the condition at infinity. The desired
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FIGTRE 16~Maps of the functions :(z) and wa(z). .

velocity function for the closed-open-closed tunnel with
unequal pressures is thus of the form:

Q(z)=Mw,(2)+Nws(2)+ws(2)

The constants 3 and N are derived in the two following
sections.

Evaluation of integrals.—In the following development,
the modulus of all the elliptic integrals is 1/e; the modulus

,will therefore not be indicated in the symbols. In the

designations for the incomplete elliptic integrals, E, E’, F,
and F’, the terms in parentheses are the upper limits of
integration. Then

nO=RPwo= [ Tl K

1 [@2—z?
wi(1)=R.P.ws(a)—= f N

LE wl(“)—f =

which by the substitution z?=q?—(a?—1) [? reduces to

e
LP.ws(a)= fl ’ /5‘?_::; dz

3‘ :

a
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which by the substitution #?=a?*— (a®*—1)# reduces to

dl =¢qK'—ia B’

N e e B

Solution of simultaneous equations for M and N, —With the aid of the four formulas just derived, the two previously
mentioned equations in M and N may be written

%—K+NaE= 1

%K’+Na,K’—NaE’=O

which are easily solved simultaneously for M and N. By introducing the following relation between the complete elliptic
integrals (reference 11, p. 520} _
EK'—KK'+KE'=%

the expressions for M and N are finally obtained in the following forms:

1 p— ,
M—?(K —E"

N=_22
ar

Value of Mw, + Nuw, at infinity.—The constants M and N have been determined so that I.P.(A4w, +Nw,)=0 at infinity;
furthermore, R.P.Muy=0 at infinity, as is clear from figure 16. Therefore, the value of Mw;+Nw;, at infinity is merely
R.P.Nws at infinity. It is necessary to investigate this limit before choosing the form of ws, because, as was previously
noted, the purpose of w; is to provide @(z)=0 at infinity. The limit may be written

1 [qi—g2 o [r2__ 2
RPNwz(m)=Nj; G‘T__:_z_dz_i_NJ; J?___:z dz

The first term is simply NaE. In order to evaluate the secdnd term, substitute e=2 . : - - .=

I
Nf \/“z“z dz=Na f\/l l;ff__._.f | _ o
1= o
e[ meeRE I
SHY (LY W _
. o VI-D0—D o B(1~D)(a®—1%)
The first term is —NeK. In order to evaluate the second term, it is noted (reference 12) that
dJ(T—_EZ)W g2 e pg? gt _

A TN O e O w1 A g
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Transposing terms in this equation gives
a a? ai—I2

PYQA—D@~? 1-D(*-B) \/i—lz

dl I

whence

_____N'azfl d__l —_
o v (1—)(a*—0B)

N f [@=Ea_

172

o f dl
o BA—D@—D)

N \fm !

0

=NaK—NaE—NEP>I_(a_—2:ﬁ t

0
The first two terms on the right are exactly canceled by the
two terms previously obtained, so that the final result is

1

lim R.P.Nw,(z)= hm N LZZ)(—G-—Q

z—o 1]

—lim NZ\KI—Z—'Z)(I—é

Z—re

“].IIQNQ—'— a2 ! )

Derivation of wy.—In order to cancel the effect of the
terms Muw,+Nw, at infinity, the function «; must approach
—R.P.Nun(z) as z increases without limit. In addition, it
must have no singularities in the upper half of the z-plane,
1t must satisfy the condition of continuity at z=4-1, it must
be a pure real on the fixed boundaries and a pure imaginary
on the free boundaries, and it must be zero at z=0. It is
readily formulated as

__Z-

ws(z) =—Nz —\
That this function satisfies the first condltlon is readily shown
by writing it in a slightly different form and expanding the
radical:

1—z 1=
m—Ng\/a —].Im—-N.c -

z—m z—x 1=

=lim—Nz (1 Ta-2:21+ . )

Z— o
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Comparison of this expression with that for lim R.P.Nuw,(z) -

shows that the difference between the two expressions
approaches zero as z approaches infinity. That the function
satisfies the remaining conditions is readily verified by
inspection.

The complex velocity function for the closed-open-closed
tunnel with unequal pressures is, finally,

pLY A n (2 dz _
W= w8 [ ey
[1—z2

2K' [* [a2—2z? 2K’
— —dzt+——=z
aw 0\ 1—z aw \ a‘*—z

=2 @ —EVF @) -2 B+ \/ 1=2" (93)
1—

(22)

or

z
a2

where the modulus of the elliptic integrals is 1/a.

Induced velocity on the axis.—For the special case in
which z=iy, the preceding equations for @ reduce to a
somewhat simpler form. The procedure will be only out-
lined herein, inasmuch as the manipulative steps are similar

to those already described.
Replacing z with iy in the expression for w, and then sub-

2

stituting :t,12=-j%-—cz2 reduces the first term to

24 1
_: (KI _E’) Kf _F’ 3
[ (\' 1%)]

The samesubstitutions, together with the previously described
technique from reference 12, reduce the second term to

I \/ 1+-E’ll—2

)

The third term is found directly as
21K’ V 1492
atr y ¥
1 +a2

The total simplifies to the form
N\+EF (— 2 (24)
[14%
Viia

o =22] —xE (2
Ji+E
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Normal velocity and mnormal displacement at the free
surface.—The normal velocity on the free surface may be
written in the following form:

-k S 0D

d" 2K’ ‘/m
T——3 & 2
a’r 12

By the substitution of 2?=ae?*—(a*—1)/, the integrals are
readily reduced to standard forms of incomplete elliptic
integrals, and the equation takes the form

2z (&=)-xe (=]

21K’ 22—1 :
p 9"/ o B (25)
-5 -

The normal displacement, or distortion, of the free surface
is found by integrating this expression along the free surface
in the physical plane:

IP. Q) =2t (&'—
1<z<e T

21,K’

LP. Q@) =

1<z<a

Normal displacement at $=fo.P. Qx) dt
1

% da
— fI LP. Q)2

The integral may be evaluated numerically; however, the
third term of I. P. @(z) is amenable to ana,]ytical treatment:

Sl [ ‘/ 7
(Ve
—[K' F'(\/“*“”)]

At the edge of the exit lip, where x=a, this expression reduces
to

2?,K’ B )

NUMERICAL RESULTS

In the following sections are described some numerical
results that were computed by the preceding equations in
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order to show the magnitudes of the entrance and exit effects.
With regard to sign, it will be noted that & contraclockwise
vortex has been considered positive, in keeping with the
usual mathematical notation. With a positive (left-to-
right) tunnel velocity V, such a vortex corresponds to a
negative lift. The corresponding induced velocity v will,
for the tunnels under discussion, be positive (upward); hence,
if e represents downwash angle, it will be negative, but the
ratio e/¢; will be positive.

It may be noted further that, since the complex velocity
has been made nondimensional by dividing by V, the com~
ponent » is identical with —e, in radians, and the component
« is the fractional increase in the horizontal velocity. The
equivalence of the two ordinate scales indicated in the plots
of the results follows from the equation relating vortex
strength and lift:

T €6

V2
Closed-open tunnel.—In figure 17 are shown calculated
values of the induced downwash angle along the tunnel axis

for various positions of the lifting vortex along the axis. The
figure shows that for £=1.0 and 1.5, the induced angles at

the vortex itself (¢=1.0 and 1.5, respectively) are almost

']
exactly %.- which is the value for an infinitely long open tun-

nel; and, furthermore, the two curves are symmetrical about
the point £=%. In fact, within the accuracy of the plot,
these two curves are identical with the curve for an infinitely
long open tunvel. It may be concluded that the closed en-
trance has no effect if the vortex is more than one tunnel
height from the entrance. For §=0.5, which is a more
likely location of the wing, the induced velocity at é=¢; is
0.48I, and the curve is no longer exactly symmetrical
about the point £=¢ ; however, these differences from the
conditions for the infinitely long open tunnel are too small
to be practically significant, so that the usual infinite-open-
tunnel theory is still adequate for £=0.5. For § less than
0.5, the deviations from infinite-open-tunnel theory become
larger rapidly until, when the vortex is in the plane of the
entrance (§=0), the induced angle at the point &=% is

I!I
onlyz-

A similar discussion. applies for the vortex in the closed
portion of the tunnel (£<0), although this case normally has
no practical significance. For &=—1, the induced angles
in the neighborhood of the vortex are practically identical
with those for an infinitely long closed tunnel; however, in
the open region (£>>0), the curve is considerably different
from that for the infinitely long closed tunnel (shown as the
dashed curve in fig. 17).
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FIGURE 17.—Tunnel-induced angle on axis of fwo-dimensional elosed-open tunnel with vortex at several locations along axis.

Symmetrical closed-open-closed tunnel.—In figure 18
are shown similar curves for a symmetrical closed-open-

closed tunnel of which the length of the open section is

1.5 times the tunnel height. All curves show a sharp redue-
tion in the induced angle as the closed exit is approached and
entered; however, for £<1, the closed exit has practically
no effect on the induced velocities at and upstream of the
voriex. The induced angle at the vortex decreases rapidly
as the vortex moves downstream from about £=1.0 and is

I‘I in the plane of the exit (§=1.5).

Closed-open-closed tunnel with one exit lip.—Figure 19
shows results for a tunnel similar to that just discussed except
that one exit lip is omitted. The two curves shown are very
similar to the corresponding curves for the symmetrical
condition. As was pointed out earlier, the horizontal com-
ponent of the induced velocity on the axis is not zero for this
unsymmetrical configuration. Values of this horizontal
component have been plotted in figure 20 for the same two

vortex locations as in figure 19. The values are seen to be
very small in the forward part of the tunnel but become quite
large in the neighborhood of the exit lip. The effect is con-
sistent with the concept of the exit lip as a concentration of
vortices having total strength equal and oppesite to that of
the bound vortex and serving thereby to turn the air back to
its originel direction. The fact that the two curves are prac-
tically identiecal lends further support to this viewpoint.
Comparison of the three tunnel types.—In figure 21
are compared the induced-angle curves for £=0.5 and 1.0
for the three tunnel types just discussed. It is seen that the
differences are slight up to about §=1.0; beyond this value the
curves for the closed-open tunnel continue to rise, while the

" others descend rapidly. The effect of the closed exit is some-

what larger for the tunnel with two exit lips than for the
tunnel with one exit Ilip. Although the induced angles become
slightly negative in the downstream closed region, they even-
tually return to zero.
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FIGTRE 21.—Comparison of tunnel-induced angles on axis for three types of two-dimensional tunnels. Length of open sections for the closed-open-closed tunnels s 1.5 times tunnel height

Symmetrical closed-open-closed tunnel with unequal pres-
sures on the two free smrfaces.—By means of equation (24)
calculations were made of the induced vertical velocities
on the axis of & closed-open-closed tunnel of jet length equal
to 1.5 times the tunnel height and having equal and opposite
horizontal perturbation velocities (—u, and 4} on the upper
and lower free surfaces, respectively. The results are plot-
ted in figure 22. The curve shows that the vertical velocity

component (or the induced angle) has an almost linear
variation along the axis, which corresponds to the fairly
uniform curvature of the jet that would be espected to result
from the pressure difference between the upper and lower
surfaces. For this same condition, the integral of the normal
velocity along the free surface (equation (25)), which is the
downward displacement of the jet boundary at the exit lip,
was found to be 3.89u;.
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For a vortex I located at £=0.5 in the equal-pressure
case, the integral of the normal velocity along the free surface
(equation (21)}, which is proportional to the upward dis-
placement of the jet boundary at the exit lip, was found to be
1.20TY. Accordingly, zero displacement at the exit, cor-
responding to the existence of a closed space above or below
the jet (see part I), will result if the flow described in the
preceding paragraph is superposed on the equal-pressure
, =031,
The corresponding effect on the induced angle at £=§ is

found as follows: at &=£=0.5, I%for the equal-pressure case

flow in such proportion that 3.89u,=1.20I"; thatis

(fig. 18)is 0.48. From figure 22, %at £=0.5for the unequal-

pressure case is —1.44. Since 0.31 X —144=—045, it is
seen that, if spillage at the exit lip is prevented, the induced
velocity in the region of the vortex is nearly eliminated. A
similar comparison of the slopes of the curves in figures 18
and 22 in the neighborhood of £=0.5 shows that the induced
curvature in the region of the vortex is also nearly eliminated.

Résumé of numerical results.—The induced angle at the
lifting vortex is essentially that for an infinite open jet if the
vortex is more than half the tunnel height from the entrance
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and the exit. The induced angles for case 2 (one fixed exit
boundary) are nearly the same as for case 3 (symmetrical
exit), so that any failure of the flow to contact the upper exit
lip should not appreciably affect the tunnel correction.
Finally, for case 3, if enough of the different-pressure flow is
added to assure zero displacement of the freec boundary at the
exit (that is, if spillage at the exit is prevented, as by enclos-
ing the space into which the spillage would normally ocecur),
the induced angle at the voitex may be nearly eliminated.

1. CIRCULAR TUNNELS

In part III an outline is given of a gencral method for
calculating the boundary effect in an open circular tunnel of
finite jet length. The solution, involving expansions iv
Bessel functions, is somewhat similar to the solution for a
closed cireular tunnel (reference 13) but is constructed so tha
it satisfies the condition of uniformity of pressure over the
open boundary and also the condition of continuity of
velocity at the entrance lip. Numerical results are given for
a lifting element on the tunnel axis.

SYMBOLS

£1,¢ rectangular coordinates in units of the tunnel radius
with origin at lifting element (sce fig. 23)

£ p,0 cylindrical coordinates (see fig. 23)

a,b ¢-coordinate of entrance and exit lips, respectively

B variable of integration
q variable of integration (see reference 13)
&, disturbance potential associated with body (or with
vortex system)
® tunnel-induced potential
e tunnel-induced potential in elosed circular tunmnel
&, residual potential (®—&;) .
In Bessel function of the first.kind of order m
U constant longitudinal perturbation velocity on free
" surface .
gn®(8) mth Fourier sine coefficient of ba_fI::‘ t
o=
9@ (® mth Fourier cosine coefficient of %q;‘i -

hme® nth coefficient in series for g, (¥
Yom sth zero of J,’ (not including the zero at the origin)
rn®  mth Fourier sine coefficient of —%;Eic)
p=l
rn®  mth Fourier cosine coefficient of _K‘I’_&t@
pel

2 172
b tunnel-induced velocity parameter (—;; %’JL—I—)
p density of fluid
L lift of hfting element
w tunnel-induced velocity normal to the £p-plane
14 free-stream velocity
R tunnel radius
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FiGURE 23.—Cirenlar closed-open-closed tunnel showing coordinate systems.

ANALYSIS

INTRODTCCTION

In the analysis of the three-dimensional, circular, closed-
open-closed tunnel, an appreciable simplification results when
- the tunnel axis lies in the plane of the horseshoe vortex.
For off-center locations of the horseshoe vortex, or for a
source-sink body on the axis, or for the general unsymmetrical
disturbance, certain complications arise that are related to
the fact that the pressure on the free boundary is then not
equal to the pressure at + « in the closed parts of the tunnel.
That is, for these cases, if the net perturbation velocity is
zero far upstream and downstream in the closed parts of the
tunnel, a constant longitudinal perturbation velocity u#0
will exist on the free surface. (See parts I and IL.) A
similar complication results for a source in a completely
closed tunnel when it is treated by the method of reference 13.

The analysis described in the following section is applicable
directly to the case in which the tunnel xis lies in the plane
of the horseshoe vortex and for which the longitudinal per-
turbation velocity on the free surface is zero. (See part I.)
In the succeeding section are derived the additional terms
needed for the solution of the more general problem. The
significance of the titles of these two sections will become
clear in the analysis.

CYLINDRICALLY SYMMETRIC TERM OMITTED

Boundary conditions and formal expression for &,—The
solution is developed in cylindrical coordinates (£, p, 8) where
the faxis coincides with the tunnel axis and ¢ is measured
from the horizontal plane. The relations of these coordinates
to the rectangular coordinates (£, u, {) are indicated in fig-
ure 23. The distance variables &, 7, {, and p are considered
in units of the tunnel radius.

Let ®,(£,0,6) be the disturbance velocity potential asso-
ciated with the lifting body in unlimited space (in particular,
the velocity potential of a horseshoe vortex). It is desired

- E=aq.
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to find a function ®(fp,0), harmonic inside the cylinder
p=1, for which (see part I)

E@SP%@)“EI:O (&<a, E>b)
E’(‘I’g_‘é"i’) ,,=1=0 (e <E<b)

where the region £<a, £>b is the closed portion of the tun-
nel and a<¢<b is the open portion of the tunnel. Ip addi-
tion, according to the condition of continuity at the entrance

lip (part I) the derivative —g;{; must be continuous at
p=1

The function @ is then the velocity potential of the
additional flow due to the tunnel boundary.
The function & is conveniently considered in two parts:

&=Pc 124

where &; is the known tunnel-induced potential for the same
vortex system in a completely closed circular tunnel (refer-

ence 13). The determining conditions for &, are then

(1) A2,=0 (b <1)
9% _ :

@ FH =0 (6<a, £)
0% __ 0(®t%c)

@ Fa =R @<iy)
0%y _ _

(4) ap p=1_0 (E—CL)

The function &, may be expressed formally (seereference13) as
s [sinmod ["-I=lird f“ w r
q’A_mZé"l s m'Gﬂ-J; ,ingI(,iq) dg . =™ (B) cos Q(ﬂ—g) dB+

cos me%r

= Jm(’;'PQ) b
~ Taliod g, f In®(8) cos Q(ﬁ-—t—)dﬁ] 26)

where ¢, (8 and ¢,®(p are, respectively, the mth sine and
cosine coefficlents of the Fourler series for aai:‘

p=
B are variables of integration. The integrations over 8
would, in general, have the range — = to 4 «; howerver,
condition (2) shows that the functions g, (8), 7=1, 2, are
zero from —« to @ and from & to + . The convergence
of this function and its derivatives to the desired function
&, and its derivatives is discussed in the appendix of ref-
erence 13. A modification is necessary because of the dis-

and ¢ and
)3

e e . OBy
continuity m ——=

y 0p [p=1

the desired convergence may be proved for regions bounded

away from the circle p=1, £=5.

that may exist at £=5. For this case,
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The assumption of zero perturbation velocity on the sur-
face of the jet is equivalent to the assumption that the ex-
0(@,+%2c)

aE p=1
term independent of 8. For this reason no m=0 term ap-
pears in expansion (26). The next section discusses the
somewhat special treatment that is required when the
Fourier series contains & term independent of 6.

Evaluation of ¢,"?(¢).—The function ®, given in the
preceding equation satisfies conditions (1) and (2) regard-
less of the precise form of the functions g,¥(¢). It is now
desired to find the functions ¢, (¢) for a<{¢<Cb such that
%, will satisfy conditions (8) and (4). To this end the
functions sre represented by infinite series of the form

pansion of — in a Fourier series in ¢ contains no

m

=23 b sinnr 52 (27)

W —F D ain T
I O =Hmo sin 5 g — 24 i

G"

Since gn“({a) thereby equals zero, condition (4) is auto-
matically satisfied.
Substituting this series in equation (26) gives

=i_1 Z.:O [hmn(l)Pmn (E;P) sin ma"]"hmn(g)Pmn (E, P) cos mB]

(28)
where
1= Julirg) f rB—a _
mO(E;P) 7Jo ‘Lng,(%Q) d_(l sin 2h—a cos Q(ﬁ E) dﬁ
and, for n340,
o J .
Prrttin)=r [ 705800 ag f sin nr §=5 cos ¢ (- dB

In the evaluation of these two expressions, the inner integrals
may be found analytically and the outer integrals, which
converge rapidly, may be found numerically. It is possible,
however, by means of contour integration similar to that
discussed in reference 14 to transform the infinite integrals
into infinite series that are more convenient for the present
purpose. The contour integration and the resulting infinite

series are given in appendix A.
D1ﬁ"erentmt1ng equation (28) with respect to £and taking

p=1 gives

%4l _ W g OPuma($1)
B |yt~ g | e SR MO G
hma® cos mé aP""‘(E’l):I - (29)

The constants A, are to be determined so that.condition (8)

O(@y+&c)

bé - 18

is satisfied. For this purpose the function—
expanded in a Fourier series in ¢:

__0(&+%c)

5 =37 [ra®(8) sin mo-+rn®(E) cos me] (30)
E p=1 m=]

Equating coefficients in equations (29) and (30) in order to
satisfy condition (3) then gives
© OPpalE,1 .
n P (D=2 hna®?® _D(‘E,_') 4=1,2)
a=0 £
It is assumed that the functions r,“?(£) can be satisfactorily

approximated by a finite number of terms of these series.
This assumption seems reasonable, inasmuch as %)-
is bounded as n approaches infinity (see appendix B) and
hna® approaches zero as n approaches infinity. Thus,

e (E)z%hm“’ OPma(£1)
a=0 of

mean ©1) gre computed 2t a seb

The functions 7, (§) and
of points {£:},%=0, 1,2, ... I, where I=N. The coeflicicnts

b are then determined (method of least squares) so that
the expression

2 f‘mm(&) Zh h aPﬂm(Eﬂl)]

is a minimum for all values of m and 7. Tor each pair of
values of m and 7, this condition gives N+1 equations for
the N41 unknowns Age®?, Am® . . . hpy, as the N1
partial derivatives with respect to An,* must be equal to
zero. These equations are

g Tm(f)(s)apmk(gﬁl) ‘nﬁ h 7 meg(Ei,l) aP‘mk Ei;l)] 0

(k=0,1,2, . ..N)

Remarks on the computations—The points {£} and the
value of V are chosen so that the addition of more points and
increasing the value of IV will no longer appreciably affect
the results. It is clear that the point £=& cannot be used
and that care must be taken not to choose too large a pro-
portion of the points {£} in the neighborhood of t=a and
£==b; any such attempt to describe more sccurately the
infinite values of ¢,%(¢) at £=b or of its derivatives at
¢=¢ and £=0b with a finite number of coefficients will causc
a large error in the approximations to ¢,%(£) elsewhere in
the interval a<{¢<b.
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Since the funetions r,® (8 rapidly approach zero as m ap-
proaches infinity, the preceding equations need be solved for
only a small number of values of m. The values of hn,®
thus obtained can be used to give an approximation to the
function &, (equation (28)):

@A_Z Z [hmn( B Ppra (E}p) sin MmO0-+Ena® Paa (E;P) cos ma]

m=1 n= (31)
Any desired interference velocity may now be obtained by
differentiating this series term by term and adding the re-
sults to the corresponding interference velocity for the closed
tunnel.

The vertical induced velocity in the plane of symmetry
is simply

2 122
df lr=0 p 08 |o=0
for points on the right side of the tunnel axis, or
2 __ 138,
of =0 p 00 1s

for points on the left side of the tunnel axis. Inspection of
equation (31) shows immediately that the §-derivative of the
second term in the bracket is zero for either case and the
contribution of the first term is

1 a@i 1 Af N w
5 00 jomo 5 2k 2 Mhmn " Prn (610)
or
_]_'. .@. -—__ X E —_— m (1)
Tp 0= p mz_lnz—) (— 1) My ® Prn ()

Furthermore, all vertical velocities on the axis itself may be
obtained by considering only m=1, because

(m>1)

The usual geometric symmetries also contribute toward
simplifying the calculations. TFor example, if the horseshoe
vortex lies in the horizontal plane of symmetry of the tunnel,

gmm =Tm(2) =hmna

If, in addition, the vertical plane of symmetry of the tunnel
is also the vertical plane of symmetry of the horseshoe vortex,
all even values of m are eliminated; in the corresponding
antisymmetrical case (as with aileron deflection) all odd values
of m are eliminated.

lim']; Pmn (E;P)EO
0 P

@@=

CYLINDRICALLY SYMMETRIC TERM

For a normal veloctiy at the tunnel wall g,(¢) that is
independent of ¢ the potential function cannot be given

956646—51- 35

exactly in the form of the preceding section since for m=0
the integral with respect to ¢ will, in general, not converge
for ¢ in the neighborhood of zero. It is necessary to add
additional terms to the potential so as to insure the con-
vergence of the integrals with respect to ¢. Moreover, these.
terms must be of such a nature that the potential function is
still harmonic and gives the required normal velocity at the
tunnel wall.

The singularity-free potential inside the tunnel then taLea
the form

—_ Jo(’iqu) b .
= L g ’(tq)f_a 9o(6) cos ¢(6—4) b

.
2ot 2 | e a8 g

where k= lim 22/ o(B) and Wheref go(B) dB8 is the Cauchy

Pl B
principal value of the integral. Both the limit and the
integral must be assumed to exist.

The appearance of these additional terms is not wholly
due to the presence of the open seetion in the tunnel. For
& source in a completely closed tunnel the second term does
not vanish and would have to be used in calculating the
tunnel-induced pérturbation velocity by the method of
reference 13. However, for a closed body or a vortex system
plus its reflections in & completely closed tunnel, *both of
these additional terms vanish.

It is easy to verify the fact that the additional terms do
insure the convergence of the integral with respect to ¢. A
straightforward differentiation then shows that & is in fact

=1=90(5)-

For the closed-open-closed tunnel, the boundary condition
(see part I) that the velocities far upstream and downstream
be equal is no longer automatically satisfied by putting the
total tangential velocity on the jet surface equal to zero.
The determining conditions for &, are now

harmonic and satisfies the boundary condition —g%
B

(1) A®=0 (<L)

@ 4 =0 | (<aamd£>D)
08 _  o@+2c)

(3) aE P=1_ aE R p=1+u (G§£<b)
. afbA a@A

@ lm Sr=tm o

- _

(5) _b_p—,=1—0 ((=a)
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Conditions (1) and (2) are satisfied by assuming ¢,(£)=0
for ¢ <@ and £>b. Thus

1 (el Jiieg) ([ 2
A_;Jo [iqgfo’(iq)fag"@cos_w E)d_ﬁ_ qua_g"(é)_fi_p]dq
(32)

Again it is desired to find go(¢) for e<<¢<b so that &, will
satisfy conditions (3), (4¢), and (5). The representation of
go (£) in the same form as before (equa,t_ion 27)

ﬁ"{'g hgﬂ sin nr g:

gol§)=hg sin %

automatically satisfies condition (5). Substituting this series

in equation (32) gives

‘1’A=§ hOnPon (E; P)'I

where

P, oo(fs P) =1-];r_£

Jo(*PQ)J 'm% cosq(ﬁ Hdp—

1o (19)
b
-;—2 . sinzz—rg 2 dﬂ:ldg

=g c0s ¢B—HdB—

Sll'l n% 'Z

1 Jo(ing)
Pou(§, p)= f [faq Ji(q) .

%f smnr————dﬁ] dg

The resulting infinite series for the Py,(£,0) obtained by
means of contour integrations are given in appendix A.
Condition (3) then becomes

0Pu(E 1) 9@o+%c)

ghofz YR Y: p=l+u - (e=£<D)
But (see appendix A)
Py dP,,
zl-l.ﬁ-nm ot e-l-Et ¢
and so
%, 2%,

A S = m

so that condition (4) becomes hm E’a%—o Thus it is nee-

essary that
hoo

I S

T =t AW

2(b—a) b—a
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There exists a unique value of u for which the coefficients
hos will satisfy this equation and it ean be found as follows:

Let
hon=nhon' +vhon"’

where
> + OPou(§, n__ (%o +%¢)
nZ--ohon oF 0f =1
and
= ” aPOn(E;]-)_
,E) hon _a-E-__ 1
Then if
hog' +uhoy” : i (hOn,'I'u‘hon”)[l_(—.1)"]=0
T a=1 nmw
2(b—a) b—a
2hor + 3 222 [1—(— 1)
== h
2h.m”+2 o 1 — (— 1y

The coeﬁicients h(m’ and h-u,,” are found by solution of
sets of simultaneous linear equations, as described in the
previous section.

The function &,"=1 ho."Po(t,0) is the perturbation
potential which, when added to that of a uniform flow, gives
the potential of the disturbance-free expanding tunnel
described in part I and indicated in figure 2. The cor-

"
responding perturbation velocities bgzg have equal and

opposite values at « and — .
EXAMPLE

As a somewhsat simplified illustration, the problem of a
semi-infinite unit doublet distribution (degenerate horseshoe
vortex) along the tunnel axis was considered. The tunnel
was assumed to have an open jet 3 tunnel radii in length.
The tunnel interference was calculated for four different
positions of the upstream end of the doublet distribution,
these positions being 0.1, 0.4, 0.7, and 1.0 radius downstream
from the entrance. 1f the upstream end is taken as the
origin of the coordinate system, then (see appendix C)

s ___1__2 Ji(ig)
nO=—grEm e G0
(m1,751)

[ Ko(q)+Ku(g)] cos gt dg

33)

where K, and K, are the Bessel functions as defined in ref-
erence 15.

The points {&} were taken as ¢, ¢-0.3, a--0.6, .
a-+2.7, thatis, aset of ten points, at 0.3 intervals, starting with
the entrance lip of the tunnel. The coefficients ky," were
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FiatRE 24.—Tunnel-induced veloclty parameter along tunuel axis for several positions of the Iiffing element in a closed-open-closed circular tunnel.

found by the method of least squares for N=0, 1, ..., 5
and elso so as to satisfy the equations

nOE)=3 @ 2Dialbl)
n=0 " aE

at all ten points. Plots of the resulting functions g,®(#) for
the different values of NV indicated that convergence was es-
sentially complete for V between 3 and 5. This simplifica-
tion results in appreciable saving in the amount of compu-
tation. Not only is it necessary to solve a smaller set of
simultaneous equations but also P, and dP;,/Of need be
found for fewer values of n.

The computation was fairly straightforward. In the de-
termination of »,?(§), K, and K, were obtained from the
tables of reference 15, and J; and Jy were obtained from
the tables and from the relations between the Bessel func-
tions and their derivatives (references 15 and 16). Weddle’s
formula (reference 17) is convenient for performing the inte-
grations. In the case of Py,, the values of y,, appearing in

the formula for @, (p) were found from the formula in ap-
pendix IIT of reference 15, and J; and J,/, as just noted.

In the evaluation of E% Py, it is noted that the value of
.1 1
Lty |

The results of these computations together with those for
the completely open and ecompletely closed tunnels and those
given in reference 8 are shown in figures 24, 25, and 26. In
figure 24, the vertical tunnel-induced velocity along the axis
for the four different positions of the lifting element together
with the results for the open and closed tunnels are plotted
against distance from the lifting element. The same results
are plotted against the longitudinal distance from the
entranee lip in figure 25. Figure 26 shows the results of
reference 3 compared with the results of the present report
for the same case—that of the lifting element 1 radius
downstream from the entrance lip. '

The tunnel-induced velocity in the upstream regions and
in the neighborhood of the lifting element, although only
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‘slightly less than that for an open tunnel for the lifting ele-
ment 1 radius downstream, falls off more and more rapidly
as the lifting element is moved towards the entrance lip.
The maximum induced velocity is attained about 1 radius up-
stream from the exit and is never more than 78 percent of
the maximum value for a completely open tunnel. After
the maximum the values fall rapidly and approach the
values for a closed tunnel in the downstream regions. The
results of reference 3 (see fig. 26) are consistently below the
present results especially in the region behind the lifting
element.

An extrapolation from the present results indicates that
the induced upflow at the lifting element, for the lifting ele-
ment in the plane of the entrance lip, is approximately zero,
or the average between the completely open and com-
pletely closed cases. The same result (that the effect in the

plane of the entrance lip is the average of the effects for the
completely open and the completely closed tunnels} was also
obtained for the two-dimensional tunnel (fig. 18).

CONCLUSION

For an open wind tunnel; the corrections corresponding to
an infinitely long open jet will usually be adequately accurate
if the region of interest (where the lift is located and where
the boundary-induced flow is being considered) is at least
half the jet height from the jet entrance end exit sections.
As the distance of the lifting element from the entrance is
decreased below this limit, the boundary-induced flow
decreases rapidly and, when the lifting element is in the
entrance plane, the induced angle at the lifting element is
about the average of that for an open tunnel and that for a
closed tunnel.
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together with those for open end closed eircular tunnels.

In the theoretical studies of these flows, the usual boundary
conditions of pressure uniformity on the free surface and of
zero normal velocity on the closed surface must be supple-
mented with the conditions that the velocity be continuous
af the entrance lip and that the velocities far downstream and
far upstream in the closed sections be equal. For the two-
dimensional open tunnel, a convenient general mathematical
approach is to transform the infinite strip (representing the
tunnel) to the upper half-plane by the logarithmie trans-
formation and then to develop the desired complex velocity
in this transformed plane. For the cireular open tunnel the
solution may be effected by expressing the potential by a
finite series of Bessel functions, satisfying the boundary condi-
tion on the free surface at a finite number of points, and solv-
ing for the coefficients by simultaneous linear equations.

For noncircular open wind tunnels, solutions in terms of -
available functions will be very inconvenient. For such
cases, the trends indicated by the present results may suffice,
when applied to the presumably known corrections for the
infinitely long open and closed configurations, to provide
adequate corrections. Solutions for the general three-
dimensional configuration may also be possible by electrical-
analogy methods, in which either the perturbation velocity
pofential or the acceleration potential is analogous to the
electrical potential in an electrolyte solution. Such analogies
may be characterized, however, by considerable technical
difficulty.

LANGLEY AERONAUTICAL LABORATORY,
NaTioNaL ApvisoRy COMMITTEE FOR AERONAUTICS,
Laxerey Fiswp, VA., December 20, 1948.



APPENDIX A
EVALUATION OF P,..(¢, p)

EVALUATION FOR m#0

Contour integration.—For n0,

1 (= Julipg) f b B—a
mn(f; P) T Jo ’LQJ '(’bg dq Sln'nﬂ'b a,cos Q(ﬁ E) dﬁ
(A1)
The inner integral may be found directly:
e B—
ja sin T cos g(B—8dp

- {sm mr's—+q(ﬁ  [+sinf nrf=2—q(e— o |{as

nw
b—a

=—T[(—1)“ cos g(b—§—cos g(é—a)] ~ (A2)-

2_
g b—a

The problem of evaluating Pm.(£,s) thus reduces to that of
evaluating integrals of the form

j’“’ Ju(tpg) coskgdg
o 19Jn'(Lg)(g*—h?)

Consider the integral in the complex z-plane

J (Tp2)et -

1
EH§ 12 (12)(22 —-hg) dz

around the contour indicated in figure 27. Its value is the

sum of the residues of the integrand at its poles inside the .

contour. These poles are the values of zfor which .,/ (12)=0.
The zeros of J,,’ will be designated ¥,; they are real and

may be obtained from the formula in appendix III of refer-

ence 15. The poles of the integrand then occur at iz=1,y,
that is, at 2= —14y,» Since only the poles within the contour
are desired, only the negative zeros of J,’ are considered.

The residue of - (z ) at g=—1y,, is

*
2+?:ysm= ) z+?:yam .
=ity Jm,('iz) 2>—item Jm’(iz)_Jm’(ysm)

since o' (Ysm)=0; by the definition of the derivative this
expression reduces to
J, m"(ysm)
540

o £ X
h

FIGURE 27.—Path of complex contour integration.

The re51due of the integrand at z=—1y,, is thus

i Jm(P'ysm)ek”‘"‘
Ysm (ysm.2+ hz) Jm”(ysm)

But the Bessel functions satisfy the relation

1 m?
Jm"'['_ Jm"l‘(l__z') J-m.—_-o
z z
so that at 2=y.n, where J,'=0,

2__, 2
S Ysm) =m_%:ny;_m In(Yem)

whence; finally,

Jm(’i P Z)Qikzdz

L§ — th(P'y.lm)e ml em
271 J 12, (12)(22—h?)

G ) Jaln)

where the number of terms in the summation depends on
the radius of the outer semicircle.

For k=0, if the radius of the outer semicircle is allowed to
approach infinity in discrete steps so as to avoid the poles of
the integrand, the integral over the semicircle approaches
zero. ‘The limiting values of the integrals along the two
inner semicircles, as-their radii approach zero, are readily
determined by the usual process as

. Jm(—iph)e~ ™

YARTLS(—iRy -

and
J (i ph)et
4h2J ! (th)
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These two terms may be combined after noting that réversing the sign of the argument in J, and .J,,” merely reverses the
sign of their ratio, to

Juliph)

TaR TR S kb

Equating the total integral along the infinite contour to the sum of the residues thus gives

Julipq)e™dq Ju{iph) T I nl0Ysm)e Hemy o
mf ST GO @ —TD TR T ) S B L G T T i —gond) T or)

where the ¥,, terms are now defined as the positive zeros of J,,” instead of the negative zeros (if J,’(x)=0, so also does
Jn'(—2)). By equating the imaginary part of the left-hand term to the right-hand side, which is a pure imaginary,
there results, finally

Jul(ipg)coskq dg wiJa(iph) In(pYsn)e HsmYsm .
L o A £ 3 5 LY LS Y e oy i ey

Expressions for Pp,, n7%0, m><0.—In the preceding development it was assumed that £=0, which was acceptable with
regard to equation (A2) in view of the fact that the cosine is an even function of the varmable. This essentially nén-
negative value of £ must be retained, however, in the final expressions for P,.(£, p):

2_.bn'r J (bmr)

P 1 I (lp bn"a) I:( U sin b _g[:,— _‘E Giﬂn]_l_

nw m(Pysm)'ysm —ih—g —lg—q! : .
E) = [(_]_)"-e 0~8¥em —g—iF “lysm] (A.3)
b—a i Ysm?+ T [m? '-(ysm)zl Jm(ysm)
b—a

Now for a<£<5,

(— 1y sin B BrE gy gin [ S0 C) ]

=—sinnmr g—_—

i

. —a

=-sinnr |E—a]
b—a

b—a+(@a—§ :I

For £<a,

_n.bslnw 2
(—1)*sin ! —(—1)"sin —a

=sin nx

For £>5, :
(—1ysin BB0T_(1yegin [ £22=020),

=sinnw —g_—
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The first term on the right-hand side of equation (A3) is thus equal to zero for £<a or £>b. The desired expressions f01
Prun(§,0),m#0, are, therefore, for ¢ = £<5,

o)

mn(E,p)—- J <b )smnf——i—b MZ:}Q

mn(s)(p) e (&— E)h’,m_(._. )“e"’(b-a”:m]
[

and, for §Sa or £25,

Pra(t, p)=—5 233 Qun (o) o 210m— (— 1)~ o=tl4en]

[ys m

The caleulations for n=0, which follow similar lines, are not given here. The final formulas are for ¢ = §<b,

where

J (P'ysm)ysm (’ﬂe?éO)

Jul ip . - : -
Pro(§, p)=—7— ( 2(b_ )) sin g g Z’*}ZJ Qmo(s)(p) Yome™ O Ohn— 2(b_a_)e‘(5—a)ﬂm]
2(b—a) I (2(b a))

for £<q,

PMO(E; P) =32;) Qmo(&‘) (P) I:?I:m.e_ 8 2(610:) e- (a_aﬂsm]
and for §>5,

Pmo(sx p)=-— 82:0 Qmo @ (P) [ysme_ = e +2(bﬂ-__ ) e~ - ”"H:I :
where

In(pYsn)Yom : - — e .- ——
yam2+[—2(b%a)]z } (P~ YemD T Yom)

EVALUATION FOR m=0

Qmo® (p)= {

The evaluation of P, (&) for m=0 proceeds essentially as before with the difference that the contour of integration
must avoid the origin. For =0, the final formulas are as follows: for a =< £<b,

Pm(ap)=_‘[2<b;a)]2_2;— 5 0 Jj: : 2[(62(:)]«1)] s imatE Qo [y v—go ]

for £<a,

PM(E,P)_—I:z(b (L)] + :; a)+2 Qoo™ I:y:oe - E)f’:o—z _a) e (a-Ew.o:I
2 a
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and for £>b,

™ =0

2(b—a)

Pt 0)= —[2(6;‘1)]- £-a i Qoo(') [y,qe—ﬁ—a) m-—.z (bia-) g—&-a v.o]

For n=£0, the corresponding formulas are as follows: for ¢ < &<,

Jo -'ip b.Ta)

Pl ) == (= (= 1) (b= Bl+— 0= sin e £ LTS 0 = —(—1)7=0-Pr]
b—a _ %b—a’R(?’b—a)
for £<a,
Pos(t )= ——— [6— 9 —(— 1" — Bl 57 3 Q[ rio—(— 1)7e=0-0%]
b—a
and for £>8,
Pon(t, )= = [ 0) = (— (e Dl — 5 33 Qon [~ & 0—(— 1)~ 60
b—a
APPENDIX B -
PROOF THAT OPma(£1) IS BOUNDED AS n—«,a=:=b

) o
Differentiating the formula from appendix A for P,.(£,p) and putting p=1 gives

OPrag])_ 7" (i+%)
FY: Y (i b.n_,ra) e’ b—a = [ys_mz_{-(b'rfa_)z] (M*—Ysu®)

The second term of the right-hand member is of order;ll-_for large n so that

Ja (125
lim D_IM___lim __(_@;a-_ cosnE g::

R o Roe g gt (‘i nw )

b—a

—_— F o 2
€os nw g_a_ p 0T >3, Ysm [~ G am | (— 1)7 g~ =02,z

The cosine factor of this expression merely oscillates between 1 and —1. For the remaining factor, it is noted from the
t
asymptotic expressions for the Bessel functions (reference 15, pp. 59-61) that J, (if) is essentially of the form <™ ;‘Z’_t
V27
Jn(31)

1. GD)

as

t— =, from which it can be readily shown that the fraction approaches unity as f—c,

956646—31

36
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APPENDIX C
DERIVATION OF EQUATION (33)

Equation (33) was derived for use in calculating some of
the results given in reference 13, but it was not explicitly
stated and discussed in that paper. Because certain steps in
its development are not obvious, the present outline of its
derivation is given. Familiarity with reference 13 will be
assumed.

Certain difficulties arise in the treatment of the doublet

line directly; so the result is found by considering a horseshoe .

vortex of finite span and letting the span approach zero.
D,
aP p=1
(where &, is defined in reference 13) corresponding to a horse-
shoe vortex of strength T' and span ¢ having one trailing
vortex along the tunnel axis and the other to the right of
the axis. The procedure for the doublet consists of letting
the yaw angle ¢ be zero, expanding the radicals in ascending
powers of ¢, and proceeding to the next step in the analysis,
where ¢ will eventually be made to approach zero. In the
expansions, powers of ¢ higher than the first may be neglected
except where ¢ occurs in the product &o, since £ takes on
infinite values; furthermore, since for the doublet the feld
should be symmetrical about the vertical plane of symmetry

Equation (6) of reference 13 gives the formula for

(0__:%- » unsymmetrical factors, as ¢ cos 6, may be imme-

diately eliminated. The formula for %?;—2 is thus

. p=1
b<I>2 PU . EO’ E
5| =—==lim 6 —— ) —
i o

E sin 8 1— 1
¢ (2 Fsin? 9) JI+ 847 2)
Esin @ cos? @
Pren’ 8[41+gz @ +‘z=’)-3f2]} €D

According to the procedure of reference 13, it is necessary to
make a Fourier analysis of the three terms in the braces and
then to insert the Fourier coefficients in equation (8) of
reference 13.

In the first term in the braces, the expression within the
palentheses is the first and only Foumer coefficient. Chang-
ing £ to B and inserting the expression into the inner integral

of equation (8) of reference 13 gives

8
f (-‘/1_1..62 2 _‘/1+62)COSQ(B_E) dB

which, if integrated by parts, reduces to

lim =

c—»oq.J—a[(l—I-ﬁz)w (1+p% 2)3/2]3“1 q(B—8 dB

The contribution of the first term in the brackets is

sin g(8—8 dB__
(L +65

(See reference 15, p. 52.) The fact that the contribution of
the second term in the brackets is zero follows immediately,
upon performing the change of variable p=g8s, from the
Riemann-Lebesgue lemma (reference 11, p. 172).

The third term in the braces of equation (C1) is converted
as follows:

o ~2K(g)sin g

cos? ¢

Esme_l: _ ____tsing
P yite G+onl

(1+g

so that again the first and orily Fourier coefficient is given
directly. Inserting it into the inner integral of equation (8)
of reference 13 and integrating by parts gives

| =B _pde— [ 130 gB—§
f__w (1o °o8 g(B—8dp . TR dg

=—2¢K(q) sin ¢

The second term in the braces of equation (C1) is not a
one-term Fourier series. Its nth TFourier coeflicient is
given by a constant times

fz'fsinosinnﬂ 1— 1 46
T CER ) \f_mz—;z) '

Inserting this expression in the inner integral of equation (8)
of reference 13 and reversing the order of integration gives

L © g 1 y
j; sin #sin n&f_u et ) (1 7 _ngaz)cosg(ﬁ—f) dpdé

L3
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After substitution of p=8¢, the limit of the inner integral
becomes

mi (7 2 _1 2_) .
E.il.}ej_ap2+azsin26<1 1;]__{_Pz)':osg(ﬁ' £)dp

Integration by parts and elimination of terms in ¢° reduces
this expression to

a—‘U q f I:’() plzlpzz"l)m] sin ¢ (%—E) dp

which is zero, by the Riemann-Lebesgue lemma.

Finally, then, for the unit doublet <%=1)

2sin 0 (= Ji(igp)

<13‘2= - . 1ng,(7‘q) [QKQ(Q)TKl(Q)] SIn qug
@ _2sin g (= Ji(iq) . )
as!p=1'— = o 1JLGQ) g Ko@)+ Ki(@)] cosgidg
The potential &, of a unit doublet line along the axis is
{ 3 sin 4
Fp=—5— (——— : l)=_< +1)
N VE+
whence ‘
9% __ sing
Ok |oer LD

The flow of the usual reflection vortices for wings of finite
span reduces, as the span becomes arbitrarily small, to a
uniform upflow in the finite section of the tunnel and there-
fore contributes nothing to the longitudinal velocity.

_ 3(@y+o)

Yz is thus seen to

p=1

The coefficient of sin ¢ in

be the expression given in equation (33).

1

2.

©

10

11.

12,

13.

14

15.

16.
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